Разработка ГПА нового поколения. Типы газоперекачивающих агрегатов с газотурбинным приводом и их характеристики Состав системы автоматического управления

Газоперекачивающие агрегаты (ГПА) предназначены для использования на линейных компрессорных станциях магистральных газопроводов, дожимных компрессорных станциях и станциях подземных хранилищ газа, а также для обратной закачки газа в пласт при разработке газоконденсатных месторождений. Cистема автоматического управления некоторыми газоперекачивающими агрегатами (САУ-А), выполненная с использованием достижений микропроцессорной техники, обеспечивает работу агрегатов в автоматическом режиме, что позволяет отказаться от постоянного присутствия обслуживающего персонала около агрегата. Работа обслуживающего персонала в процессе эксплуатации агрегатов заключается в проведении регламентных работ по его обслуживанию, периодическому контролю параметров и состояния. Конструкция агрегатов позволяет осуществлять осмотр, а также замену некоторых элементов без его остановки. При разработке агрегатов используются современные системы обработки данных и автоматизированного проектирования. Высокое качество изготовления газоперекачивающих агрегатов обеспечивается применением прогрессивных технологических процессов. В процессе производства агрегаты подвергаются комплексным испытаниям, что позволяет обеспечить эксплуатационные характеристики агрегатов, а также надежность и безопасность их работы.

Газотурбинный газоперекачивающий агрегат включает в себя газотурбинную установку, центробежный нагнетатель природного газа, выхлопное устройство, системы топливную и пусковые, масляную, автоматического управления, регулирования и защиты, охлаждения масла, гидравлического уплотнения нагнетателя.

Из большого числа возможных схем газотурбинных установок на газопроводах наибольшее распространение получили установки простого цикла, выполненные без регенерации или с регенерацией тепла выхлопных газов, с независимой силовой турбиной низкого давления ("с разрезным валом") для привода нагнетателя газа.

Большая часть типоразмеров ГТУ для привода нагнетателей выполнены по одинаковой конструктивной схеме -- с "разрезным валом" и силовой турбиной низкого давления, поэтому их характеристики могут быть с достаточной точностью обобщены в приведенной относительной форме, т е. в виде зависимостей приведенных параметров, отнесенных к номинальным значениям.

Оборудование ГПА выполняется в виде блочных конструкций, обеспечивающих транспортировку железнодорожным, водным или специальным автомобильным транспортом (масса блоков обычно не превышает 60--70 т). Блоки должны изготавливаться готовыми к монтажу и проведению пусконаладочных работ без их разборки и ревизии. Наружные трубопроводы и электрические коммуникации, соединяющие блоки, должны быть сведены к минимуму и иметь простые соединения.

Система автоматического управления ГПА должна обеспечивать:

Автоматический пуск, нормальную и аварийную остановку агрегата, регулирование и контроль технологических параметров ГТУ и нагнетателя-

Предупредительную и аварийную сигнализацию,

Защиту ГПА на всех режимах работы,

Связь агрегата с цеховой системой автоматического регулирования и управления,

Возможность дистанционного изменения режима ГПА от цеховой и станционной систем управления.

ГПА должен обеспечить работу при давлении газа на выходе из нагнетателя равном 115% от номинального (для проведения испытания газопровода), при суммарной продолжительности этого режима не более 200 ч/год. Пуск ГПА осуществляется, как правило, с предварительным заполнением контура нагнетателя технологическим газом рабочего давления.

Комплексное воздухоочистительное устройство входного тракта ГТУ должно обеспечить кондиционность циклового воздуха на входе компрессора и шумовую защиту в различных условиях эксплуатации.

Противообледенительные устройства могут включать в себя сигнализацию обледенения, системы подогрева горячим воздухом элементов входного тракта и компрессора, всей массы циклового воздуха подмешиванием продуктов сгорания, отбираемых после турбины, подмешиванием воздуха из компрессора (регенератора) или подмешиванием горячей смеси воздуха и продуктов сгорания.

Конструкция ГПА должна обеспечить целый ряд требований, соответствующих действующим стандартам и нормам взрывобезопасности, взрывопреду- преждения и взрывозащиты, пожарной безопасности, к вибрации, шумовым показателям и тепловыделениям на рабочих местах и в окружающей среде, к температуре, влажности и подвижности воздуха рабочей зоны в зданиях для ГПА

Высота дымовой трубы ГТУ выбирается из расчета рассеивания токсичных веществ, содержащихся в отработавших газах, до предельно допускаемых концентраций в приземном слое в соответствии с санитарными нормами.

Газоперекачивающий агрегат ГПА-Ц-16 на базе авиационного привода НК-16СТ в блочно-контейнерном исполнении предназначен для перекачки природного газа по магистральным газопроводам и спроектирован на рабочее давление нагнетателя 7,5 и 9.9 МПа (соответственно модификации ГПА-Ц-16/76 и ГПА-Ц-16/100). Рабочее давление на выходе из нагнетателя определяется лишь конструкцией закладных элементов проточной части нагнетателя (рабочие колеса, диффузоры, кольца), для которых предусмотрена замена в конструкции агрегата: таким образом, агрегат ГПА-Ц-16 полностью унифицирован и представляет собой конструкцию, состоящую из окончательно собранных функциональных блоков и систем, поставляемых на компрессорные станции в полной заводской готовности.

Конструкция блочного комплектного автоматизированного агрегата ГПА-Ц-16 предусматривает осуществление стабильной работы агрегата на компрессорной станции при перепадах температуры окружающей среды от 218К (-55°С) до 318К (+45°С) (климатическое исполнение "XЛ" категории размещения 1 по ГОСТ 15150-69).

Конструктивно агрегат представляет собой установку, все оборудование которой размешено в отдельных транспортабельных блоках, представлен на рисунке 2. На месте эксплуатации осуществляется монтаж агрегата на монолитном железобетонном фундаменте.

Рисунок 2 - Газоперекачивающий агрегат ГПА-Ц-16

а - вид сбоку; б - вид сверху; 1 - камера всасывания; 2 - шумоглушитель на входе; 3 - устройство воздухоочистительное; 4 - блок масло агрегатов; 5 - блок маслоохладителей; 6 - трубопровод системы подогрева циклового воздуха; 7 - шумоглушитель на выходе; 8 - проставка; 9 - опора выхлопной шахты; 10 - диффузор; 11 - турбоблок; 12 - блок автоматики: 13 - блок вентиляции 14 - блок промежуточный; 15 - коллектор дренажа; 16 - коллектор системы обогрева; 17 - блок фильтров топливного газа.


Рисунок 3- Схема ГПА-Ц-16

Агрегат включает в себя блоки турбоагрегата, маслоагрегатов, автоматики, контрольно-измерительных приборов (КИП) и вентиляционных устройств, а также устройства подвода циклового воздуха с воздухоочистительным устройством (ВОУ), системами шумоглушения и антиобледенения и выхлопное устройство с шумоглушением.

Турбоблок 11 является базовой сборочной единицей агрегата, в его контейнере на металлической раме размещены нагнетатель, приводной двигатель, маслобак агрегата с трубопроводной системой, гидроаккумулятор, выхлопная улитка, различные системы обеспечения нормальной работы агрегата.

Перекачиваемый газ по газопроводу через входной патрубок "А" поступает в центробежный нагнетатель, где происходит дожатие и подача его через выходной патрубок "Б" в магистральный газопровод.

В качестве привода нагнетателя используется газотурбинный двигатель НК-16СТ авиационного типа, для запуска и питания которого используется очищенный и отредуцированный газ (ГОСТ 21199-75). Для очистки топливного газа от механических примесей на агрегате имеется блок фильтров топливного газа 17.

Механическая связь между свободной турбиной двигателя и ротором нагнетателя осуществляется через промежуточный вал (муфту). Двигательный отсек и отсек нагнетателя турбоблока разделены герметичной перегородкой.

Подвод циклового воздуха для приводного двигателя осуществляется через входные устройства, включающие в себя воздухоочистительное устройство 3, шумоглушители 2, камеру всасывания 1, блок промежуточный с конфузорным воздухозаборником 14. Воздухозаборник обеспечивает равномерность поступающего в двигатель потока воздуха.

Для отвода выхлопных газов, выходящих из свободной турбины двигателя. и снижения их шума служит выхлопное устройство, состоящее из выхлопной улитки, диффузора 10, проставки 8 и шумоглушителей 7. Диффузор и шумоглушители установлены над турбоблоком на отдельной опоре 9.

С целью обеспечения удобства обслуживания агрегата основные узлы маслосистемы размещены в отдельном блоке маслоагрегатов 4, а приборы и шиты системы автоматического управления агрегатом в блоке автоматики 12.

Отсек двигателя вентилируется за счет отбора воздуха из всасывающего тракта центробежным вентилятором, установленным в блоке вентиляции 13. Система вентиляции исключает попадание пыли в отсек двигателя. Блок вентиляции обеспечивает также охлаждение масла в случае аварийного отключения внешнего электропитания вентиляторов за счет отбора части воздуха от компрессора двигателя и пропускания его через маслоохладители

Охлаждение масла в маслосистемах двигателя и нагнетателя осуществляется аппаратами воздушного охлаждения, установленными в двух блоках маслоохладителей 5.

Блок вентиляции и блоки маслоохладителей размещаются соответственно на блоках промежуточном, маслоагрегатов и автоматики. Такая компоновка блоков позволила максимально сократить площадь, занимаемую агрегатом на газоперекачивающей станции.

Стыковка всех блоков осуществляется через гибкие переходники, позволяющие компенсировать неточности установки при монтаже агрегата.

Для обеспечения защиты воздухозаборного устройства двигателя от обледенения на агрегате предусмотрена система подогрева циклового воздуха 6. Система включается в работу автоматически посредством датчиков температуры окружающей среды и работает на принципе отбора с помощью эжекторов части горячих выхлопных газов и подачи их на вход в двигатель. Эжектирующий воздух подводится от компрессора низкого давления. Система обогрева блоков и отсеков агрегата позволяет проводить пусконаладочные и ремонтные работы в холодное время года, она также обеспечивает отбор горячего воздуха от работающего агрегата для нужд станции. Воздух на систему обогрева отбирается от компрессора высокого давления двигателя в количестве; подключение системы обогрева к станционной системе производится через общий для всего агрегата коллектор 16.

Система автоматизированного пожаротушения и автоматизированная система управления агрегата обеспечивают его работу на всех режимах без постоянного присутствия обслуживающего персонала возле агрегата, а так-же функционирование в составе комплексной системы.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Агрегат ГПА-Ц-16

Агрегат ГПА-Ц-16 предназначен для транспортирования природного газа по магистральным газопроводам при рабочем давлении 56-76 кг/кв. см.

На дожимных компрессорных станциях ГПА работает с давлением на выходе до 41 кг/кв. см со сменной проточной частью нагнетателя.

ГПА полностью автоматизирован, устанавливается в индивидуальном контейнере и может эксплуатироваться при температуре окружающего воздуха от -55 до +45 град. С.

Газотурбинный двигатель НК -1 6СТ

воздухоочистительный газотурбинный двигатель агрегат

Стационарный газотурбинный двигатель НК16-СТ создан на базе авиационного турбовентиляторного двигателя НК-8-2У. Представляет из себя двухкаскадную трехвальную ГТУ. Состоит из двух модулей - газогенератора и свободной турбины, имеющих собственные рамы. Модули при эксплуатации могут заменяться.

Нагнетатель НЦ-16

Нагнетатель представляет из себя двухступенчатую центробежную машину, предназначенную для сжатия природного газа. Состоит из следующих составных частей. Наружного корпуса, который представляет собой стальной кованый цилиндр. К цилиндру с внешней стороны приварены стальные кованые патрубки - всасывающий и нагнетательный. К нижней части приварены опорные лапы нагнетателя, а в верхней части - опорные лапы под два гидроаккумулятора. С обоих торцов корпус закрыт стальными коваными крышками, которые фиксируются разрезными стопорныим кольцами и кронштейнами. Внутри наружного корпуса расположен внутренний корпус. Внутренний корпус состоит из камеры всасывания, диафрагмы, диффузоров, входного и обратного направляющих аппаратов. В нижней части внутреннего корпуса закреплены ролики, из которых внутренний корпус вкатывается в наружный.

Воздухоочистительные устройства / ВОУ -1 10 -4 Ц для агрегата ГПА -Ц-1 6

Преимущества и особенности

Использование комбинированной системы фильтрации (КСФ) на базе фильтров EMW filtertechnik VKKW RU-400-4-MG-1-PF-MPK-48/22 (производства фирмы EMW, Германия) обеспечивает очистку воздуха до степени F9 (максимальный размер частиц пыли после фильтров - не более 5 мкм);

Конструкция самого фильтра позволяет легко производить его замену в случае засорения;

Благодаря использованию фильтров EMW ВОУ обладает значительно меньшим сопротивлением по сравнению с аналогами;

В качестве обшивки козырька используется поликарбонат, крепящийся к каркасу при помощи алюминиевых профилей и саморезов, и обладающий рядом преимуществ по сравнению с другими материалами: невысокой стоимостью, меньшей массой, отсутствием коррозии, возможностью монтажа без использования сварки;

Байпасный клапан, установленный сверху блока фильтров, автоматически срабатывает при перепаде давления 70 мм. вод. ст на всасе и возвращается в исходное положение при перепаде давления 52 мм. вод. ст. Обогрев клапана позволяет срабатывать ему при любом диапазоне температур;

Конструкция блоков фильтров в виде призм позволяет уменьшить площадь и массу ВОУ;

Конструкция козырька ВОУ обеспечивает скорость воздуха на всасе до 0,8 м/с, что исключает попадание атмосферных осадков под козырек.

Технические характеристики

Наименование параметра

Изготовитель

ООО НПП «35-й Механический Завод»

Тип очистки воздуха

Комбинированная система фильтрации (EMW)

Количество ступеней очистки

3 ступени

Количество циклонов, шт.

Количество фильтров, шт.

Номинальный расход воздуха, кг/с

Гидравлическое сопротивление ВОУ, мм. вод. ст

Эффективность очистки воздуха от частиц более 5 мкм., %

Масса, кг

Габариты, мм

10450х6900х5780

Газотурбинный двигатель НК-16СТ

Газотурбинный двигатель НК-16СТ для газодобывающей отрасли создан на базе авиационного двигателя НК-8-2У, что обеспечивает его высокую надежность и эффективность. Применяется в газоперекачивающих агрегатах ГПА-Ц-16.

Серийное изготовление и поставка двигателя НК-16СТ на магистральные газопроводы производятся с 1982 года. Выпущен 1141 двигатель. Суммарная наработка парка двигателей составляет больше 40 миллионов часов. В связи с высокой надежностью данный привод нашел применение вэнергетике. В настоящее время на более чем 30 электростанциях двигатели НК-16СТ используют в качестве приводов энергоустановок, работающих на попутном нефтяном газе.

Технические характеристики

Мощность, не менее:

Эффективный КПД, не менее:

Диапазон изменения частоты вращения приводного вала свободной турбины:

3975-5350 об./мин.

Окислов азота:

Окиси углерода:

Максимальный уровень звукового давления:

Масса двигателя с рамой:

Расход топливного газа:

Запуск двигателя:

автоматический

Температура газа на выходе из свободной турбины:

Гарантийный ресурс:

Межремонтный ресурс:

25 000 часов

Назначенный ресурс:

100 000 часов

Применяемое масло:

Система электрического запуска газотурбинного двигателя

Электростартер СТЭ-18СТ

Одна из последних разработок ЗАО «Эверест-турбосервис» и ОАО «Электропривод» (г. Киров) - создание электростартера СТЭ-18СТ для запуска газотурбинного двигателя НК-16СТ и его модификаций мощностью 16-20 МВт, используемого ОАО «Газпром» более чем в 600 газоперекачивающих агрегатах.

Преимущество новой разработки заключается в замене турбодетандерного запуска двигателя с помощью сжатого природного газа (в этом случае в атмосферу суммарно выбрасывается до 3 млн. м3 природного газа в год) на экологически чистый электрозапуск. Это позволит упростить систему запуска, снизить расход природного газа, повысить экологическую и технологическую безопасность. Данная разработка отвечает всем требованиям по экологичности эксплуатируемого оборудования.

Электростартер устанавливается на место пневмостартера и не требует доработки места стыковки с коробкой привода агрегатов двигателя, что позволяет производить монтаж системы электрозапуска с электростартером СТЭ-18СТ в условиях эксплуатации.

Номинальная мощность электростартера СТЭ-18СТ - 65 кВт, номинальный крутящий момент, развиваемый электростартером, составляет 245 Н/м (25 кгс/м), режим его работы повторно-кратковременный. Управление электростартером осуществляется блоком управления БУС-18СТ, который преобразует напряжение переменного трехфазного тока 380В, 50Гц в напряжение переменного трехфазного тока от 0 до 380В и частотой от 0 до 400Гц. Блок управления определяет готовность электростартера к работе, задает режимы его работы, момент вращения электростартера, выдает сигнал на отключение, а так же позволяет провести диагностику и настройку параметров электростартера.

Электростартер СТЭ-18СТ сертифицирован и имеет маркировку взрывозащиты 1ExdIIВТ3. Его применение разрешено во взрывоопасных зонах.

В ноябре 2006 года электростартер СТЭ-18СТ в составе системы электрозапуска двигателя НК-16СТ прошел успешные стендовые испытания на стенде Зеленодольского машиностроительного завода. Испытания электростартера проводились в соответствии с действующим на компрессорных станциях ОАО «Газпром» алгоритмом запуска двигателей НК-16СТ, то есть неоднократно повторялась серия из трех холодных прокруток и запуска двигателя. Максимальное значение температуры обмоток статора электростартера при этом составило 76°С.

В соответствии с «Программой приемочных испытаний системы электрического запуска двигателя НК-16СТ в газоперекачивающем агрегате ГПА-Ц-16 на КС «Вязниковская» ООО «Волготрансгаз» в апреле-мае 2007 года на двигателе НК-16СТ выполнена замена воздушного стартера на электростартер СТЭ-18СТ с блоком управления БУС-18СТ. После отладки установленного оборудования агрегат ГПА-Ц-16 был выведен на режим «Магистраль».

В июне 2007 года система электрического запуска двигателя НК-16СТ без замечаний прошла предварительные испытания в объеме «Программы приемочных испытаний системы электрического запуска двигателя НК-16СТ в газоперекачивающем агрегате ГПА-Ц-16 на КС «Вязниковская» ООО «Волготрансгаз». Электростартер СТЭ-18СТ полностью обеспечил выполнение циклограммы холодной прокрутки, горячего запуска и промывки газовоздушного тракта двигателя НК-16СТ.

В августе 2007 года с целью оценки эффективности и работоспособности системы электрического запуска двигателей НК-16СТ (НК-16-18СТ) с электростартером СТЭ-18СТ и принятия решения по дальнейшему внедрению данной системы специальной комиссией проведены приемочные испытания на объекте ОАО «Газпром» - КС «Вязниковская» ООО «Волготрансгаз». На основании положительного результата приемочных испытаний Приемочной комиссией ОАО «Газпром» принято решение о доработке остальных двигателей НК-16СТ на КС «Вязниковская» системами электрического запуска и рекомендовано применение данной системы электрозапуска на других объектах ОАО «Газпром».

На двигателях НК-16СТ (НК16-18СТ) в июне 2009 года на КС «Вязниковская» специалистами ЗАО «Эверест-Турбосервис» и ОАО «Электропривод» была выполнена доработка системы запуска путем замены пневмостаретера на электростартер СТЭ-18СТ. Решение о переводе всех двигателей КС «Вязниковская» на систему электрического запуска было принято после 2,5 лет лидерной эксплуатации системы с электростартером СТЭ-18СТ на одном из двигателей этой станции. За это время электростартер выполнил около 500 запусков и не имел дефектов.

В процессе оборудования двигателей системой электрозапуска проводилась доработка электротехнической части газоперекачивающего агрегата ГПА-Ц-16 для подключения электростартера к основному вводу существующего вводно-распределительного устройства, расположенного в отсеке автоматики ГПА. На каждом двигателе после монтажа системы электрического запуска и доработки электрики ГПА выполнялись холодные прокрутки, горячие запуски и промывка газовоздушного тракта, после чего агрегат по акту передавался эксплуатационниками.

Кроме того, продолжаются испытания оснащенного электростартером СТЭ-18СТ двигателя НК-361 мощностью 25 МВт, установленного на магистральном газотурбовозе ГТ-1.

Технический потенциал электростартера СТЭ-18СТ, проявленный при испытаниях, позволяет использовать его в системах электрозапуска газотурбинных двигателей других типоразмеров и мощности.

Блок управления стартером БУС-18СТ

Технические характеристики:

· Электропитание и управление электростартером осуществляется от блока управления стартером БУС-18СТ.

· Электропитание БУС осуществляется от сети переменного трехфазного тока:

· Напряжение питание 380В

· Частота напряжения 50Гц

· Номинальная мощность электростартёра 60…65кВт

· Номинальный момент, развиваемый электростартёром 245Н*м (25 кгс*м)

· Максимальный момент, развиваемый электростартёром, не менее 539Н*м (55 кгс*м)

· Ток, потребляемый электростартёром

· при номинальном моменте, не более 120А

· Частота выходного вала электростартёра:

o на режиме холодной прокрутки 1380 об/мин

o на режиме горячего запуска 2600 об/мин

· Напряжение управляющих сигналов 27В

· Режим работы повторно-кратковременный

· Масса электростартёра, не более 57 кг

· 230х440Габариты электростартёра

· Габариты БУС 1500х1000х400 мм

· Масса БУС 250 кг

Нагнетатель НЦ -1 6

Корпус нагнетателя позволяет устанавливать проточную часть на весь ряд мощностей двигателей и получить высокий политропный КПД на конечное давление 56, 76 и 85 кгс/см2 и отношения давлений 1,36; 1,44 и 1,5.

Для газоперекачивающих агрегатов производятся современные нагнетатели с электромагнитным подвесом ротора и газодинамическими уплотнениями. Нагнетатели предназначены для перекачки природного газа по магистральным газопроводам. Базовые корпуса нагнетателей расcчитаны на установку сменных проточных частей, на конечное давление 56, 76 и 85 кгс/см2 и отношения давлений 1,36, 1,44 и 1,5.

Нагнетатели поставляются также и в составе нагнетательных установок, включающих блок нагнетателя с системами обеспечения.

Корпус нагнетателя на сборке

Установка нагнетательная центробежная УНЦ-16-76/1,44 применена в ГПА-16 «Волга», нагнетатель НЦ-12 56/1,44 применен в ГПА - 12 «Урал» и нагнетатель НЦ-8-56/1,44 применен в АГПУ - 8 «Волга». Нагнетатель НЦ-16-76/1,44 создан на высоком техническом уровне с использованием магнитного подвеса ротора и «сухих» газодинамических уплотнений. Применение пространственных лопаток рабочих колес и безлопаточного диффузора обеспечило получение политропного КПД в рабочей точке 85% и широкий диапазон эффективной работы нагнетателя. Конструктивно нагнетатели выполнены на базе лицензий фирмы «Дрессер» (США).

Твердосплавное кольцо со спиральными канавками «сухого» уплотнения

Предусмотрена возможность установки в нагнетатель любого из двух концевых уплотнений: торцовых масляных и «сухих» газодинамических. Подшипники применяются как гидродинамические масляные, так и «сухие» электромагнитные.

Техническая характеристика нагнетателей и нагнетательных установок с газотурбинным приводом

Область применения

Назначение

Произво-дитель-

Давление, МПа (кгс/см 2) (абс).

Газотурбинный двигатель

Габариты установки,

Масса установки,

Начальное

Конечное

Мощность,

Частота вращения ротора, об/мин

АГПУ-8 «Волга»

Перекачка природного газа по магистраль-

ному газо-проводу

2340х
1320х
1380

ГПА-12 «Урал»

2620х
2670х
1700

2900х
2500х
1760

ГПА-16 «Волга»

14550х
12000х
5300

Литература

1. http://compressormash.ru

3. http://www.new.turbinist.ru

Размещено на Allbest.ru

Подобные документы

    Описание конструкции, назначение и условия работы сварного узла газотурбинного двигателя. Выбор способа сварки и его обоснование, выбор сварочных материалов и режимов сварки. Выбор методов контроля: внешний осмотр и обмер сварных швов, течеискание.

    курсовая работа , добавлен 14.03.2010

    Тип станка (механизма), его основные технические данные. Циклограмма (последовательность операций), режимы работы главного привода. Выбор рода тока и напряжения и типа двигателя. Расчет механических характеристик выбранного двигателя, проверка двигателя.

    курсовая работа , добавлен 09.12.2010

    Использование системного анализа при исследовании масляной системы газотурбинного двигателя с целью изучения его эффективности. Схема маслосистемы с регулированным давлением масла. Структурный, функциональный анализ системы. Инфологическое описание.

    курсовая работа , добавлен 04.05.2011

    Понятие и общая характеристика, назначение и условия работы бурильной колонны, ее внутренняя структура и основные элементы, направления и условия практического применения. Динамические нагрузки на бурильную колонну, определяющие долговечность двигателя.

    реферат , добавлен 25.11.2014

    Проектирование рабочего процесса газотурбинных двигателей и особенности газодинамического расчета узлов: компрессора и турбины. Элементы термогазодинамического расчета двухвального термореактивного двигателя. Компрессоры высокого и низкого давления.

    контрольная работа , добавлен 24.12.2010

    Выбор и обоснование мощности и частоты вращения газотурбинного привода: термогазодинамический расчет двигателя, давления в компрессоре, согласование параметров компрессора и турбины. Расчет и профилирование решеток профилей рабочего колеса турбины.

    курсовая работа , добавлен 26.12.2011

    Профилирование ступени компрессора приводного газотурбинного двигателя. Построение решеток профилей дозвукового осевого компресора и турбины. Расчет треугольников скоростей на трех радиусах. Эскиз камеры сгорания. Профилирование проточной части диффузора.

    курсовая работа , добавлен 22.02.2012

    Расчет основных показателей во всех основных точках цикла газотурбинного двигателя. Определение количества теплоты участков, изменение параметров для процессов и их работу. Расчет термического коэффициент полезного действия цикла через его характеристики.

    курсовая работа , добавлен 19.05.2009

    Проектирование проточной части авиационного газотурбинного двигателя. Расчёт на прочность рабочей лопатки, диска турбины, узла крепления и камеры сгорания. Технологический процесс изготовления фланца, описание и подсчет режимов обработки для операций.

    дипломная работа , добавлен 22.01.2012

    Расчет на прочность узла компрессора газотурбинного двигателя: описание конструкции; определение статической прочности рабочей лопатки компрессора низкого давления. Динамическая частота первой формы изгибных колебаний, построение частотной диаграммы.

Ещё в 1970-х годах на базе авиационного двигателя НК-12МА была создана установка для газоперекачивающих агрегата ГПА-Ц-6,3 мощностью 6300 кВт. Создание этого агрегата явилось первым в нашей стране опытом применения модернизированного авиационного двигателя для привода газового нагнетателя. Кроме того, впервые практически было доказано, что газоперекачивающие агрегаты такого типа могут успешно эксплуатироваться в блок-контейнерах без здания турбокомпрессорного цеха, что резко сокращает сроки сооружения компрессорных станций.

Газоперекачивающие агрегаты ГПА-Ц-6,3 были внедрены в эксплуатацию на компрессорных станциях газопроводов «Оренбург-Куйбышев» и «Нижняя Тура-Пермь-Казань-Горький» в 1974-1975г.г. Для газоперекачивающего агрегата ГПА-Ц-6,3 была создана специальная газотурбинная установка НК-12СТ со свободной турбиной на базе этого двигателя с максимальной унификацией узлов и деталей серийного двигателя. При создании было обеспечено запас устойчивости работы при минимальной мощности, достаточно высокая экономичность, умеренная температура газа перед турбиной для гарантирования надёжности двигателя. На рис.3.10. газоперекачивающий агрегат ГПА-Ц-6,3.

Рис. 3.10. Газоперекачивающий агрегат ГПА-Ц-6,3

ГПА-Ц-6,3 представляет собой блочную установку, состоящую из авиационного двигателя, центробежного нагнетателя природного газа и вспомогательных систем и оборудования. Все основные элементы ГПА представляют собой блочные модули, стыкуемые между собой на месте монтажа. Опыт эксплуатации агрегата подтвердил целесообразность использования авиационных двигателей в качестве привода центробежных нагнетателей газа и необходимость совершенствования конструкции агрегата, его основных и вспомогательных систем, компоновочных решений КС, а также комплектно-блочного метода строительства компрессорных станций с подобными агрегатами.

Выпуск блочно-комплектного агрегата ГПА-Ц-6,3 явился толчком для принятия новых технических решений при проектировании КС, привёл к унификации генерального плана для всех проектируемых КС с этими агрегатами. Пылеуловители, АВО газа, установки по подготовке топливного и пускового газа и технологические узлы станций разработаны в блочном исполнении. Из сборных конструкций выполняется блок вспомогательных служб в составе: узла связи, мастерской, котельной, бытовых помещений.

На рис. 3.11. представлена газотурбинная установка.

Рис. 3.11. Газотурбинная установка ГПА-Ц-6,3 НК-12СТ

Капитальные затраты на строительство КС, оборудованной ГПА-Ц-6,3 на 35% ниже, а срок строительства почти в 2 раза меньше по сравнению с КС, оборудованной стационарными газотурбинами такой же мощности.

Применение авиационных двигателе в качестве привода ГПА в блочном исполнении получило распространение благодаря ряду преимуществ перед стационарными:

Большой мощностью при малой массе;

Быстрому монтажу и демонтажу;

Быстрому запуску и выходу на режим;

Дистанционной системе управления и регулирования режима двигателя;

Возможностью создания передвижных газоперекачивающих агрегатов;

Высоким техническим показателям и т.д.

Имеется опыт использования авиационных двигателей и в нефтяной промышленности, например по эксплуатации турбонасосной установки ПГБУ-2ЖР с авиационным двигателем с системе магистрального нефтепровода Омск-Туймазы 2.

Агрегат ГПА-Ц-16

Агрегат ГПА-Ц-16 предназначен для транспортирования природного газа по магистральным газопроводам при рабочем давлении 56-76 кг/кв. см.

На дожимных компрессорных станциях ГПА работает с давлением на выходе до 41 кг/кв. см со сменной проточной частью нагнетателя.

ГПА полностью автоматизирован, устанавливается в индивидуальном контейнере и может эксплуатироваться при температуре окружающего воздуха от -55 до +45 град. С.

Газотурбинный двигатель НК-16СТ

воздухоочистительный газотурбинный двигатель агрегат

Стационарный газотурбинный двигатель НК16-СТ создан на базе авиационного турбовентиляторного двигателя НК-8-2У. Представляет из себя двухкаскадную трехвальную ГТУ. Состоит из двух модулей - газогенератора и свободной турбины, имеющих собственные рамы. Модули при эксплуатации могут заменяться.

Нагнетатель НЦ-16

Нагнетатель представляет из себя двухступенчатую центробежную машину, предназначенную для сжатия природного газа. Состоит из следующих составных частей. Наружного корпуса, который представляет собой стальной кованый цилиндр. К цилиндру с внешней стороны приварены стальные кованые патрубки - всасывающий и нагнетательный. К нижней части приварены опорные лапы нагнетателя, а в верхней части - опорные лапы под два гидроаккумулятора. С обоих торцов корпус закрыт стальными коваными крышками, которые фиксируются разрезными стопорныим кольцами и кронштейнами. Внутри наружного корпуса расположен внутренний корпус. Внутренний корпус состоит из камеры всасывания, диафрагмы, диффузоров, входного и обратного направляющих аппаратов. В нижней части внутреннего корпуса закреплены ролики, из которых внутренний корпус вкатывается в наружный.

Воздухоочистительные устройства / ВОУ-110-4Ц для агрегата ГПА-Ц-16

Преимущества и особенности

Использование комбинированной системы фильтрации (КСФ) на базе фильтров EMW filtertechnik VKKW RU-400-4-MG-1-PF-MPK-48/22 (производства фирмы EMW, Германия) обеспечивает очистку воздуха до степени F9 (максимальный размер частиц пыли после фильтров - не более 5 мкм);

конструкция самого фильтра позволяет легко производить его замену в случае засорения;

благодаря использованию фильтров EMW ВОУ обладает значительно меньшим сопротивлением по сравнению с аналогами;

в качестве обшивки козырька используется поликарбонат, крепящийся к каркасу при помощи алюминиевых профилей и саморезов, и обладающий рядом преимуществ по сравнению с другими материалами: невысокой стоимостью, меньшей массой, отсутствием коррозии, возможностью монтажа без использования сварки;

байпасный клапан, установленный сверху блока фильтров, автоматически срабатывает при перепаде давления 70 мм. вод. ст на всасе и возвращается в исходное положение при перепаде давления 52 мм. вод. ст. Обогрев клапана позволяет срабатывать ему при любом диапазоне температур;

конструкция блоков фильтров в виде призм позволяет уменьшить площадь и массу ВОУ;

конструкция козырька ВОУ обеспечивает скорость воздуха на всасе до 0,8 м/с, что исключает попадание атмосферных осадков под козырек.

Технические характеристики

Наименование параметра

Изготовитель

ООО НПП «35-й Механический Завод»

Тип очистки воздуха

Комбинированная система фильтрации (EMW)

Количество ступеней очистки

3 ступени

Количество циклонов, шт.

Количество фильтров, шт.

Номинальный расход воздуха, кг/с

Гидравлическое сопротивление ВОУ, мм. вод. ст

Эффективность очистки воздуха от частиц более 5 мкм., %

Масса, кг

Габариты, мм

10450х6900х5780



Газотурбинный двигатель НК-16СТ


Газотурбинный двигатель НК-16СТ для газодобывающей отрасли создан на базе авиационного двигателя НК-8-2У, что обеспечивает его высокую надежность и эффективность. Применяется в газоперекачивающих агрегатах ГПА-Ц-16.

Серийное изготовление и поставка двигателя НК-16СТ на магистральные газопроводы производятся с 1982 года. Выпущен 1141 двигатель. Суммарная наработка парка двигателей составляет больше 40 миллионов часов. В связи с высокой надежностью данный привод нашел применение вэнергетике. В настоящее время на более чем 30 электростанциях двигатели НК-16СТ используют в качестве приводов энергоустановок, работающих на попутном нефтяном газе.

Технические характеристики

Мощность, не менее:

Эффективный КПД, не менее:

Диапазон изменения частоты вращения приводного вала свободной турбины:

3975-5350 об./мин.

Окислов азота:

Окиси углерода:

Максимальный уровень звукового давления:

Масса двигателя с рамой:

Расход топливного газа:

Запуск двигателя:

автоматический

Температура газа на выходе из свободной турбины:

Гарантийный ресурс:

Межремонтный ресурс:

25 000 часов

Назначенный ресурс:

100 000 часов

Применяемое масло:


Система электрического запуска газотурбинного двигателя

Электростартер СТЭ-18СТ

Одна из последних разработок ЗАО «Эверест-турбосервис» и ОАО «Электропривод» (г. Киров) - создание электростартера СТЭ-18СТ для запуска газотурбинного двигателя НК-16СТ и его модификаций мощностью 16-20 МВт, используемого ОАО «Газпром» более чем в 600 газоперекачивающих агрегатах.

Преимущество новой разработки заключается в замене турбодетандерного запуска двигателя с помощью сжатого природного газа (в этом случае в атмосферу суммарно выбрасывается до 3 млн. м3 природного газа в год) на экологически чистый электрозапуск. Это позволит упростить систему запуска, снизить расход природного газа, повысить экологическую и технологическую безопасность. Данная разработка отвечает всем требованиям по экологичности эксплуатируемого оборудования.

Электростартер устанавливается на место пневмостартера и не требует доработки места стыковки с коробкой привода агрегатов двигателя, что позволяет производить монтаж системы электрозапуска с электростартером СТЭ-18СТ в условиях эксплуатации.

Номинальная мощность электростартера СТЭ-18СТ - 65 кВт, номинальный крутящий момент, развиваемый электростартером, составляет 245 Н/м (25 кгс/м), режим его работы повторно-кратковременный. Управление электростартером осуществляется блоком управления БУС-18СТ, который преобразует напряжение переменного трехфазного тока 380В, 50Гц в напряжение переменного трехфазного тока от 0 до 380В и частотой от 0 до 400Гц. Блок управления определяет готовность электростартера к работе, задает режимы его работы, момент вращения электростартера, выдает сигнал на отключение, а так же позволяет провести диагностику и настройку параметров электростартера.

Электростартер СТЭ-18СТ сертифицирован и имеет маркировку взрывозащиты 1ExdIIВТ3. Его применение разрешено во взрывоопасных зонах.

В ноябре 2006 года электростартер СТЭ-18СТ в составе системы электрозапуска двигателя НК-16СТ прошел успешные стендовые испытания на стенде Зеленодольского машиностроительного завода. Испытания электростартера проводились в соответствии с действующим на компрессорных станциях ОАО «Газпром» алгоритмом запуска двигателей НК-16СТ, то есть неоднократно повторялась серия из трех холодных прокруток и запуска двигателя. Максимальное значение температуры обмоток статора электростартера при этом составило 76°С.

В соответствии с «Программой приемочных испытаний системы электрического запуска двигателя НК-16СТ в газоперекачивающем агрегате ГПА-Ц-16 на КС «Вязниковская» ООО «Волготрансгаз» в апреле-мае 2007 года на двигателе НК-16СТ выполнена замена воздушного стартера на электростартер СТЭ-18СТ с блоком управления БУС-18СТ. После отладки установленного оборудования агрегат ГПА-Ц-16 был выведен на режим «Магистраль».

В июне 2007 года система электрического запуска двигателя НК-16СТ без замечаний прошла предварительные испытания в объеме «Программы приемочных испытаний системы электрического запуска двигателя НК-16СТ в газоперекачивающем агрегате ГПА-Ц-16 на КС «Вязниковская» ООО «Волготрансгаз». Электростартер СТЭ-18СТ полностью обеспечил выполнение циклограммы холодной прокрутки, горячего запуска и промывки газовоздушного тракта двигателя НК-16СТ.

В августе 2007 года с целью оценки эффективности и работоспособности системы электрического запуска двигателей НК-16СТ (НК-16-18СТ) с электростартером СТЭ-18СТ и принятия решения по дальнейшему внедрению данной системы специальной комиссией проведены приемочные испытания на объекте ОАО «Газпром» - КС «Вязниковская» ООО «Волготрансгаз». На основании положительного результата приемочных испытаний Приемочной комиссией ОАО «Газпром» принято решение о доработке остальных двигателей НК-16СТ на КС «Вязниковская» системами электрического запуска и рекомендовано применение данной системы электрозапуска на других объектах ОАО «Газпром».

На двигателях НК-16СТ (НК16-18СТ) в июне 2009 года на КС «Вязниковская» специалистами ЗАО «Эверест-Турбосервис» и ОАО «Электропривод» была выполнена доработка системы запуска путем замены пневмостаретера на электростартер СТЭ-18СТ. Решение о переводе всех двигателей КС «Вязниковская» на систему электрического запуска было принято после 2,5 лет лидерной эксплуатации системы с электростартером СТЭ-18СТ на одном из двигателей этой станции. За это время электростартер выполнил около 500 запусков и не имел дефектов.

В процессе оборудования двигателей системой электрозапуска проводилась доработка электротехнической части газоперекачивающего агрегата ГПА-Ц-16 для подключения электростартера к основному вводу существующего вводно-распределительного устройства, расположенного в отсеке автоматики ГПА. На каждом двигателе после монтажа системы электрического запуска и доработки электрики ГПА выполнялись холодные прокрутки, горячие запуски и промывка газовоздушного тракта, после чего агрегат по акту передавался эксплуатационниками.

Кроме того, продолжаются испытания оснащенного электростартером СТЭ-18СТ двигателя НК-361 мощностью 25 МВт, установленного на магистральном газотурбовозе ГТ-1.

Технический потенциал электростартера СТЭ-18СТ, проявленный при испытаниях, позволяет использовать его в системах электрозапуска газотурбинных двигателей других типоразмеров и мощности.

Блок управления стартером БУС-18СТ

Технические характеристики:

· Электропитание и управление электростартером осуществляется от блока управления стартером БУС-18СТ.

· Электропитание БУС осуществляется от сети переменного трехфазного тока:

· Напряжение питание 380В

· Частота напряжения 50Гц

· Номинальная мощность электростартёра 60…65кВт

· Номинальный момент, развиваемый электростартёром 245Н м (25 кгс м)

· Максимальный момент, развиваемый электростартёром, не менее 539Н м (55 кгс м)

· Ток, потребляемый электростартёром

· при номинальном моменте, не более 120А

· Частота выходного вала электростартёра:

o на режиме холодной прокрутки 1380 об/мин

o на режиме горячего запуска 2600 об/мин

· Напряжение управляющих сигналов 27В

· Режим работы повторно-кратковременный

· Масса электростартёра, не более 57 кг

· 230х440ÆГабариты электростартёра

· Габариты БУС 1500х1000х400 мм

· Масса БУС 250 кг

Нагнетатель НЦ-16

Корпус нагнетателя позволяет устанавливать проточную часть на весь ряд мощностей двигателей и получить высокий политропный КПД на конечное давление 56, 76 и 85 кгс/см2 и отношения давлений 1,36; 1,44 и 1,5.

Для газоперекачивающих агрегатов производятся современные нагнетатели с электромагнитным подвесом ротора и газодинамическими уплотнениями. Нагнетатели предназначены для перекачки природного газа по магистральным газопроводам. Базовые корпуса нагнетателей расcчитаны на установку сменных проточных частей, на конечное давление 56, 76 и 85 кгс/см2 и отношения давлений 1,36, 1,44 и 1,5.

Нагнетатели поставляются также и в составе нагнетательных установок, включающих блок нагнетателя с системами обеспечения.

Корпус нагнетателя на сборке

Установка нагнетательная центробежная УНЦ-16-76/1,44 применена в ГПА-16 «Волга», нагнетатель НЦ-12 56/1,44 применен в ГПА - 12 «Урал» и нагнетатель НЦ-8-56/1,44 применен в АГПУ - 8 «Волга». Нагнетатель НЦ-16-76/1,44 создан на высоком техническом уровне с использованием магнитного подвеса ротора и «сухих» газодинамических уплотнений. Применение пространственных лопаток рабочих колес и безлопаточного диффузора обеспечило получение политропного КПД в рабочей точке 85% и широкий диапазон эффективной работы нагнетателя. Конструктивно нагнетатели выполнены на базе лицензий фирмы «Дрессер» (США).

Твердосплавное кольцо со спиральными канавками «сухого» уплотнения

Предусмотрена возможность установки в нагнетатель любого из двух концевых уплотнений: торцовых масляных и «сухих» газодинамических. Подшипники применяются как гидродинамические масляные, так и «сухие» электромагнитные.

Техническая характеристика нагнетателей и нагнетательных установок с газотурбинным приводом

Область применения

Назначение

Произво-дитель- ность м 3 /мин

Давление, МПа (кгс/см 2) (абс).

Газотурбинный двигатель

Габариты установки, мм

Масса установки, кг





Начальное

Конечное

Мощность, кВт

Частота вращения ротора, об/мин



АГПУ-8 «Волга»

Перекачка природного газа по магистраль- ному газо-проводу

2340х 1320х 1380

ГПА-12 «Урал»


2620х 2670х 1700


2900х 2500х 1760

УНЦ16-76/ 1,44

ГПА-16 «Волга»


14550х 12000х 5300


Литература

1. http://compressormash.ru

Http://www.new.turbinist.ru

Описание приводится в соответствии со схемами Приложение Б19, Б20, Б23, Б24.

Агрегат ГПА-Ц-16 является автоматизированной установкой с газотурбинным одноконтурным двухвальным приводом с независимой свободной турбиной (НК-16СТ) номинальной мощностью 16 МВт, с центробежным нагнетателем НЦ-16 производства ОАО «Сумское НПО им. М.В. Фрунзе»

Центробежный нагнетатель НЦ-16 состоит из корпуса и сменной проточной части. Система смазки нагнетателя циркуляционная масляная под давлением с воздушным охлаждением, система уплотнения нагнетателя гидравлическая масляная, щелевая с плавающими кольцами.

На 2 ступени компримирования ДКС установлены сменные проточные части СПЧ-16/76-2,0М1 производства ОАО «Казанькомпрессормаш» г. Казань с номинальной степенью повышения давления 2,0.

На 1 ступени компримирования ДКС на ГПА № 6 установлена сменная проточная части СПЧ-16/56-1,7 производства ОАО «Казанькомпрессормаш» г. Казань с номинальной степенью повышения давления 1,7.

В 2012 г. после проведенной реконструкции на ГПА №№ 7, 8, 9, 10 установлены компрессоры 294ГЦ2-460/18,5-41 производства ОАО «Сумское НПО им. М.В. Фрунзе» с номинальной степенью повышения давления 2,2.

Технические характеристики агрегата представлены в таблице 11.2.

Газоперекачивающий агрегата ГПА-Ц-16 состоит из отдельных функционально завершенных блоков и сборочных единиц полной заводской готовности, стыкуемых между собой на месте эксплуатации.

В состав ГПА входят: турбоблок (отсек двигателя, отсек нагнетателя), блок систем обеспечения (отсек автоматики, отсек маслоагрегатов, отсек пожаротушения), воздухоочистительное устройство (ВОУ), шумоглушители всасывающего тракта, всасывающая камера, промежуточный блок, блок маслоохладителей, выхлопной диффузор, выхлопная шахта, шумоглушители выхлопного тракта.

Технологическая обвязка ГПА-Ц-16 с установленной запорно-регулирующей арматурой обеспечивает подачу газа с входного коллектора на вход нагнетателя, с нагнетателя после компримирования в пусковой контур или в выходной коллектор (в зависимости от режима работы), подвод пускового и топливного газа к газотурбинному приводу НК-16СТ, защиту нагнетателя от помпажа, сброс газа с технологических трубопроводов при остановке ГПА.

Для обеспечения газоперекачивающих агрегатов топливным и пусковым газами предусмотрен отдельно стоящий блок-бокс фильтров газа (БФГ). Блок-бокс оборудован фильтрами топливного, пускового газа и запорной арматурой.

Состав и назначение запорно-регулирующей арматуры технологической обвязки ГПА приведены в таблице 3.5.

Режимы запуска, остановки ГПА, работы на кольцо и в магистраль, противоаварийная защита, регулирование оборотов и антипомпажное регулирование, дистанционное управление запорно-регулирующей арматурой и исполнительными механизмами реализуются в автоматическом режиме, системой автоматического управления ГПА МСКУ 4510, расположенной в отдельно стоящем блок-боксе.

Перечень блокировок и сигнализации ГПА приведены в таблице 5.4.

Значения контролируемых параметров и функции управления выводятся на автоматизированное рабочее место (АРМ) оператора, установленное в операторной ПЭБ ДКС.

Эксплуатация ГПА должны производиться в соответствии с 1.4300.4.0000.000 ИЭ «Инструкция по эксплуатации агрегата газоперекачивающего ГПА-Ц-16» и «Руководством по технической эксплуатации двигателя НК-16СТ». Последовательность работ при пуске, остановке и выводе в ремонт ГПА представлены в Приложении А13.


Таблица 3.5 - Назначение и краткая характеристика запорно-регулирующей арматуры технологической обвязки ГПА

№№ п/п Наимено­вание обо­рудо­вания Номер пози­ции по схеме, индекс DN, мм Тип привода Назначение Управление Примечание
Кран шаровой Пневмогидро-привод Отсекающий входной кран. Перекрывает входной коллектор ЦБН ГПА При работе агрегата открыт
Кран шаровой Пневмопривод Установлен на обводной линии крана № 1. Служит для продувки и заполнения контура нагнетателя ГПА перед пуском Управляется автоматически САУ ГПА, имеет дополнительно ручное (местное) управление При работе агрегата закрыт
Кран шаровой Ручной Дублирующий кран. Установлен на обводной линии крана № 1 последовательно с краном № 4 Местное управление При работе агрегата открыт
Кран шаровой Пневмогидро-привод Отсекающий нагнетательный кран. Перекрывает выходной коллектор ЦБН ГПА Управляется автоматически САУ ГПА, имеет дополнительно ручное (местное) управление При работе агрегата на режиме «Магистраль» открыт
Клапан (затвор) обратный ОК2 - Служит для предотвращения обратного потока газа в сторону ЦБН со стороны выходного коллектора - -
Кран шаровой Пневмопривод Свечной кран. Предназначен для продувки ЦБН ГПА при пуске и стравливания газа из контура нагнетателя при остановке Управляется автоматически САУ ГПА имеет дополнительно ручное (местное) управление При работе агрегата закрыт. Участвует в аварийной остановке
Кран шаровой Пневмогидро-привод Служит для работы ГПА на малое агрегатное кольцо при пуске, нормальной остановке, работе агрегата на режиме «Кольцо». При переходе ГПА из режима «Кольцо» на режим "Магистраль" остается в открытом положении Управляется автоматически САУ ГПА при запуске, нормальной и аварийной остановке агрегата, а также имеет дополнительно ручное (местное) управление При работе агрегата открыт
Клапан (затвор) обратный ОК6 - Служит для предотвращения обратного потока газа в сторону ЦБН со стороны выходного коллектора малого станционного кольца - -
Клапан регулятор (ГПА 6-10) Пневмогидро-привод Установлен на линии крана № 6. Предназначен для предотвращения работы ГПА в помпажной зоне и защите от помпажа нагнетателя путем перепуска газа с выходного коллектора на вход ГПА 1 ступени по малому станционному кольцу
Клапан регулятор (ГПА 1-5) Пневмогидро-привод Установлен на линии крана № 6. Предназначен для предотвращения работы ГПА в помпажной зоне и защите от помпажа нагнетателя путем перепуска газа с выходного коллектора на вход ГПА 2 ступени по малому станционному кольцу Управляется автоматически системой антипомпажного регулирования на базе МСКУ-4510, а также имеет ручное (местное) управление При работе агрегата обычно закрыт. Открывается автоматически для защиты от помпажа нагнетателя
Кран шаровой (вентиль) 5-1 Ручной Служит для сброса остаточного давления участка трубопровода между обратным клапаном № ОК6 и краном № 6 с целью предотвращения прорыва газа) Местное управление При работе агрегата закрыт
Кран шаровой (вентиль) 5-2 Ручной Служит для сброса остаточного давления участка трубопровода между обратным клапаном № ОК2 и краном № 2с целью предотвращения прорыва газа) Местное управление При работе агрегата закрыт
Кран шаровой (БФГ) Пневмопривод Свечной кран. Служит для продувки трубопровода и фильтров топливного газа при запуске ГПА и стравливание газа из трубопровода и фильтров после остановки ГПА Управляется автоматически САУ ГПА, имеет дополнительно ручное (местное) управление При работе агрегата закрыт
Кран шаровой (БФГ) Пневмопривод Свечной кран. Служит для продувки трубопровода и фильтра пускового газа при запуске ГПА и стравливание газа из трубопровода и фильтров после остановки ГПА Управляется автоматически САУ ГПА, имеет дополнительно ручное (местное) управление При работе агрегата закрыт
Кран шаровой (БФГ) Пневмопривод Отсечной кран. Установлен на трубопроводе подвода пускового газа к двигателю НК-16СТ для раскрутки ВС (воздушного стартера) на пуске ГПА. Служит для подачи и отключения подачи пускового газа Управляется автоматически САУ ГПА, имеет дополнительно ручное (местное) управление При работе агрегата закрыт
КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «avtoton62.ru» — Автомобильный портал - Запчасти. Оборудование. Шины и диски. Электроника