Конструкции втулок несущего винта вертолета. Несущий и рулевой винты

Конструкция вертолета МИ-171

Конспект лекций для переучивания иностранных военнослужащих

инженерно-технического состава специалистов по вертолёту

и двигателю и бортовых техников

ОБЩАЯ ХАРАКТЕРИСТИКА ВЕРТОЛЕТА

Общие сведения о вертолете

Вертолет Ми-171 предназначен для перевозки людей и различных грузов в грузовой кабине, а также для транспортировки крупногабаритных грузов на внешней подвеске.

Вертолет спроектирован по одновинтовой схеме с пятилопастным несущим и трехлопастным рулевым винтами. На вертолете установлены два турбовальных двигателя ТВ3‑117ВМ, оборудованных пылезащитными устройствами.

Грузовая кабина вертолета снабжена десантными сиденьями на 24 человека и может быть переоборудована в санитарную на двенадцать стандартных носилок.

Экипаж вертолета состоит из двух летчиков и бортового техника.

Основные технические данные вертолета

§ Нормальная взлетная масса 11000кг;

§ Максимальная взлетная масса 13000кг;

§ Максимальная масса перевозимого груза

при полной заправке топливных баков 4000кг;

§ Максимальная масса груза, перевозимого на

внешней подвеске 3000кг;

§ Масса пустого вертолета: 7580кг,

§ Мощность силовой установки 2x2000л.с.;

§ Длина вертолета:

без несущего и рулевого винтов 18,3м;

с несущим и рулевым винтами 25,32м.

§ Высота вертолета:

без рулевого винта 4,76м;

с рулевым винтом 5,55м.

§ Колея шасси 4510мм;

§ База шасси 4280мм;

§ Клиренс вертолета (по шп.№14) 0,445мм;

§ Стояночный угол вертолета 4 0 10’;

§ Расстояние от конца лопасти до хвостовой балки на стоянке 0,45м.

ФЮЗЕЛЯЖ ВЕРТОЛЕТА

Общая характеристика фюзеляжа

Фюзеляж является основным силовым корпусом вертолета и представляет собой цельнометаллический полумонокок переменного сечения с гладкой работающей обшивкой.

На рис.1.2 представлены конструктивные разъемы планера вертолета Ми-171

1.Передняя нога шасси;

2. Носовая часть фюзеляжа;

3. Сдвижной блистер;

4. Крышка люка для выхода к двигателям

5. Главная нога шасси;

6. Капот обогревателя КО-50;

7. Правый подвесной топливный бак;

9. Редукторная рама;

10. Центральная часть фюзеляжа;

11. Крышка люка в правой грузовой створке;

12. Правая грузовая створка;

13. Хвостовая балка;

14. Стабилизатор;

15. Концевая балка;

16. Обтекатель;

17. Хвостовая опора;

19. Левая грузовая створка;

21. Главная нога шасси;

22. Левый подвесной топливный бак;

23. Сдвижная дверь;

24. Сдвижной блистер;

25. Люк-окно;

26. Обтекатель пылезащитного устройства.

Фюзеляж имеет три конструктивных разъема и включает в себя:

Ø носовую часть;

Ø центральную часть;

Ø хвостовую балку;

Ø концевую балку с обтекателем.

Стыковка основных частей фюзеляжа осуществлена по шпангоутам 1 и 23 центральной части и по шпангоуту 17 хвостовой балки.

Носовая часть фюзеляжа

Носовая часть фюзеляжа представляет собой самостоятельный отсек, в котором размещены кабина экипажа, органы управления вертолетом и двигателями, приборное и другое оборудование.

Кабина экипажа занимает отсек между шпангоутами 1 Н и 5Н и отделена от грузовой кабины шпангоутом 5Н с дверью.

В кабине экипажа размещены сиденья левого и правого летчиков, борттехника, органы управления вертолетом, приборные доски, два короба под аккумуляторы и этажерки с радио- и электроаппаратурой. Кабина может оснащаться стрелковой установкой.

На правом и левом бортах имеются сдвижные блистеры размером 750х750 мм.

Остекление кабины состоит из органического и силикатного (триплекс) стекла. Силикатными являются передние стекла левого и правого летчиков. Они имеют электрический обогрев и стеклоочистители. Остальное остекление выполнено из выпуклых органических стекол, обдуваемых теплым воздухом из системы отопления. Допускаются трещины стекол длиной до 100мм с последующей засверловкой ее концов.

На левом борту между шпангоутами ЗН и 5Н установлены штепсельные разъемы ШРАП-400-ЗФ и ШРАП-500К для подключения источников переменного и постоянного тока.

Сиденья летчиков регулируются по высоте и по расположению их вдоль продольной оси кабины. Предусмотрена регулировка угла наклона спинок сидений летчиков. Сиденье борттехника - откидное.

На правом борту между шпангоутами 4Н и 5Н установлены выпрямительные устройства ВУ-6А, которые охлаждаются наружным воздухом, поступающим через жалюзи съемной панели.

На потолочной панели кабины экипажа расположен люк с крышкой для выхода к двигателям.

В кабине экипажа установлены дополнительные противобликовые козырьки на пульты, щитки и приборы.

Внутренняя поверхность кабины экипажа, приборные доски, лицевые поверхности пультов и щитков окрашены черной матовой эмалью.

Центральная часть фюзеляжа

На левом борту между шпангоутами 1 и 4 увеличена ширина проема и сдвижной двери (размер проема 1405х1250мм).

На правом борту между шпангоутами 2 и 4 вместо аварийного люка выполнен проем со сдвижной дверью (1405х825мм).

В грузовом полу между шпангоутами 7 и 10 увеличены размеры проема выхода троса внешней подвески (размер 496х950мм). Изменена конструкция крышки люка, которая выполнена из сотовой панели. Крышка фиксируется в проеме двумя неподвижными штырями слева и двумя подвижными штырями с двумя ручками справа. Открывается крышка только из грузовой кабины.

Сзади между шпангоутами 13 и 21 вместо грузовых створок установлена аппарель, закрывающая проем грузовой кабины. Для обеспечения герметичности закрытого положения по периметру фюзеляжного проема закреплены резиновые профили.

Аппарель - коробчато-клепаной конструкции, имеет лонжероны, балки, стрингеры и обшивку. В зоне прилегания выпущенной аппарели к грунту приклепан лист из нержавеющей стали.

Аппарель шарнирно подвешена на двух кронштейнах–петлях к нижней части шпангоута 13.

Убранное положение аппарели фиксируется двумя замками, которые при выпуске аппарели открываются от гидроцилиндров (гидроцилиндра), смонтированных (смонтированного) на стенке балки проема грузовой кабины.

Выпуск и уборка аппарели осуществляется от автономной бортовой гидравлической системы с помощью двух силовых гидроцилиндров, смонтированных по бортам проема грузовой кабины.

Аппарель может быть установлена в линию пола грузовой кабины и удерживается в этом положении двумя тросами.

Хвостовая балка

Хвостовая балка - клепаной конструкции, балочно-стрингерного типа, имеет форму усеченного конуса длиной 5440мм, состоит из каркаса и гладкой работающей обшивки.

Снизу в коробе установлена аппаратура ДИСС.

Снаружи балки выполнены лючки для осмотра и смазки хвостового вала.

Внутри балки расположены опоры хвостового вала трансмиссии и колодки с роликами под тросы управления рулевым винтом.

К хвостовой балке крепится стабилизатор и амортизатор хвостовой опоры.

Концевая балка

Концевая балка предназначена для выноса оси вращения: рулевого винта в плоскость вращения несущего винта.

Балка - клепаной конструкции, состоит из килевой балки и обтекателя.

Ось килевой балки отклонена вверх на угол 43 0 10" по отношению к оси хвостовой балки.

С правой стороны между шпангоутами 2 и 3 в средней части выполнен закрывающийся крышкой лючок для проверки уровня масла в промежуточном редукторе по масломерному стеклу. Еще два лючка используются для обдува промежуточного редуктора набегающим потоком воздуха и обслуживания редуктора.

Обтекатель образует задний обвод концевой балки и является фиксированным аэродинамическим рулем.

Стабилизатор

Стабилизатор служит для обеспечения необходимой продольной устойчивости вертолета. Он установлен с фиксированным углом –6 0 относительно хвостовой балки. На земле установочный угол стабилизатора может меняться в зависимости от варианта применения вертолета в диапазоне от +9 0 до -9 0 .

Стабилизатор имеет симметричный профиль и состоит из правой и левой половин трапециевидной формы в плане.

Носовая часть стабилизатора обшита дюралюминиевыми листами Д16Т толщиной 0,8 мм, а хвостовая часть может быть обшита полотном АМ100-ОП или стеклопластиком По желанию заказчика она может быть выполнена металлической. Площадь стабилизатора - 2 м 2 .

Капот

Капот включает в себя:

Ø капот двигательного отсека;

Ø туннель подвода воздуха к вентилятору;

Ø капот вентиляторного отсека;

Ø шпангоут 1К;

Ø капот редукторного отсека;

Ø шпангоут 2К;

Ø отсек капота концевой;

Ø продольную противопожарную перегородку.

Крышки капотов в открытом положении удерживаются цилиндрами, которые являются воздушными демпферами и предохраняют их от ударов о фюзеляж при открывании.

Несущий винт

Б. Лопасть несущего винта

Основным силовым элементом лопасти является прессованный из алюминиевого сплава АВТ-1 лонжерон, к полкам и задней стенке которого приклеиваются хвостовые отсеки с сотовым заполнителем.

Сотовый заполнитель склеен из алюминиевой фольги толщиной 0,04мм, сфрезерован по теоретическому контуру отсека и после растяжки образует шестигранные соты со стороной 5мм. Обшивка отсеков выполнена их авиаля толщиной 0,3мм.

Каждая лопасть имеет 21 отсек, которые вместе с лонжероном образуют контур лопасти.

Лопасть имеет геометрическую крутку +5 0 в сечениях 1-4 и далее изменяющуюся по линейному закону до 0 0 на конце лопасти (сечение 22). На отсеках 16 и 17 имеются триммерные пластины (закрылки) шириной 40мм, служащие для изменения моментных характеристик лопасти при устранении несоконусности несущего винта.

Типовой отсек лопасти несущего винта

1 – Хвостовой стрингер; 2 – Обшивка; 3 – Нервюра; 4 – Лонжерон; 5 – Противовес; 6 – Противообледенитель; 7 – Лапка нервюры; 8 – Сотовый заполнитель; 9 – Межотсечный вкладыш.

Лопасти оборудованы пневматической системой сигнализации повреждения лонжерона.

Сигнализатор повреждения лонжерона

1 – Плексиглазовый колпачок; 2 – Цилиндрик; 3 – Герметик; 4 – Прокладка;
5 – Направляющее кольцо; 6 – Направляющая; 7 – Корпус; 8 – Анероидный чувствительный элемент; 9 – Заглушка.

Каждая лопасть оборудована электрической противообледенительной системой. Для защиты от абразивного износа к внешней электроизоляции приклеена металлическая оковка, а на нее - резиновая лента толщиной 0,5мм или слой полиуретана толщиной 0,8-1мм.

Масса лопасти несущего винта - 135кг.

Г. Втулка несущего винта

Рис.3.5. Шарниры втулки несущего винта

1 – Заправочное отверстие осевого шарнира; 2 – Заправочное отверстие горизонтального шарнира; 3 – Заправочное отверстие вертикального шарнира.

Уровень масла в шарнирах втулки (от кромки заливных отверстий):

v в горизонтальных шарнирах 30-40мм;

v в вертикальных шарнирах 25-35мм;

v в осевых шарнирах 15-20мм.

В течение летного дня допускается снижение уровня масла в шарнирах:

v в горизонтальных шарнирах на 20мм;

v в вертикальных шарнирах на 20мм;

v в осевых шарнирах на 15мм.

А. Корпус

Корпус втулки сочленяется с валом главного редуктора шлицами 6 и закрепляется на нем гайкой 5 . Затяжку гайки производят специальным тарировочным ключом. Корпус имеет пять проушин 12 , лежащих в одной плоскости под углом 72° друг к другу.

Б. Горизонтальные шарниры

Пять скоб втулки 13 (рис.4.6) в соединении с проушинами корпуса 12 с помощью пальцев 11 и игольчатых подшипников образуют горизонтальные шарниры. Смещение проушин горизонтальных шарниров а, выбрано таким образом, чтобы на основных режимах полета равнодействующая R аэродинамических Q и центробежных сил F цб лопасти была направлена примерно по середине горизонтального шарнира. Такая конструкция обеспечивает более равномерное распределение нагрузки между игольчатыми подшипниками ГШ и существенно повышает их долговечность. Принципиальное устройство горизонтального шарнира представлено на рис.4.7.

Рис.4.7. Горизонтальный шарнир втулки несущего винта

1 – Проушина корпуса втулки;

2 – Палец горизонтального шарнира;
3, 7 – Резиновые уплотнительные кольца;

4 – Игольчатые подшипники;
5 – Проушины скобы;

6 – Распорные кольца

В. Вертикальные шарниры

Пять цапф осевых шарниров 9 (рис.4.6) в соединении с проушинами скоб 13 с помощьюпальцев образуют вертикальные шарниры.

Г. Осевые шарниры

На втулке имеются пять корпусов осевых шарниров 8 (рис.4.6), смонтированных на цапфах 9 .

Конструкция осевого шарнира показана на рис.4.8.

Рис.4.8. Осевой шарнир втулки несущего винта

1 – Цапфа осевого шарнира; 2 – Резиновое уплотнительное кольцо;
3, 9 – Упорные гайки; 4, 8 – Шариковые подшипники; 5 – Заливная пробка; 6 – Корпус шарнира; 7 – Роликовый подшипник; 10 – Гребенка;
11, 12, 15 – Распорные втулки; 13 – Сливная пробка; 14 – Резиновая манжета; 16 – Смотровой стаканчик; 17 – Компенсатор давления в шарнире; 18 - Заглушка

Корпус осевого шарнира 6 имеет возможность проворачиваться относительно цапфы 1 на трех подшипниках. Два шариковых подшипника 4 и 8 воспринимают изгибающие моменты от лопасти, а роликовый 7 – центробежные силы.

На днище стакана осевого шарнира имеется "гребенка" 10 с проушинами для крепления лопасти. Шарнир оборудуется сливной магнитной пробкой 13 со смотровым стаканчиком 16 . Масло в шарнире должно быть прозрачным (видна противоположная стенка стаканчика).

На заливную пробку 5 устанавливается компенсатор давления 17 , за счет прогиба мембраны увеличивающий свой объем при повышении давления в шарнире.

В настоящее время, в соответствии с конструктивной доработкой, при изготовлении втулки в пустотелую цапфу ОШ устанавливается гофрированный резиновый «чулок», выполняющий функцию компенсатора давления (рис. 4.8а, поз. 17). Компенсатор давления в шарнире (поз.17, рис. 4.8) при этом демонтируется.

Рис.4.8а. Осевой шарнир модифицированной втулки несущего винта

17 – Резиновый чулок

Д. Рычаги поворота лопастей

Рычаги поворота лопастей смонтированы на корпусах осевых шарниров и крепятся к тягам 6 (рис.4.1) тарелки автомата перекоса.

Примечание: При выполнении целевых периодических осмотров рычагов поворота лопастей ИТС применять лупу семикратного увеличения.

Ж. Гидродемпферы

Гидродемпферы служат для гашения колебаний лопастей относительно вертикальных шарниров.


Гидродемпферы крепятся к корпусам вертикальных шарниров (см. рис.4.6) и каждый их них состоит из (рис.4.10, 4.12) корпуса 4 , в котором размещается поршень со штоком 5 . В поршне установлены восемь пружинных клапанов 6 , четыре из которых открываются в одну сторону, и четыре – в другую. Для защиты от пыли и грязи шток с одной стороны закрыт дюралюминиевым стаканом 9 , а с другой – резиновым гофрированным чехлом 3 . Для смягчения удара о задний ограничитель вертикального шарнира в момент страгивания лопасти при раскрутке несущего винта на штоке закреплен упор 1 с резиновым амортизатором 2 .

При небольшой частоте и амплитуде колебаний лопасти жидкость (АМГ-10) перетекает из одной полости гидродемпфера в другую через отверстия 11 в клапанах. С увеличением частоты и амплитуды колебаний лопасти давление жидкости возрастает, и клапаны 10 открываются.

Таким образом, гидродемпфер преобразует энергию, стремящуюся отклонить лопасть, в работу на проталкивание жидкости через отверстия и заставляет лопасть колебаться вблизи нейтрального положения.

Принципиальный вид характеристики гидродемпфера (зависимость усилия на штоке демпфера Р от угловой скорости вращения лопасти относительно вертикального шарнира x ) представлен на рис.4.11.

Для отвода пузырьков вспенившейся жидкости, компенсации температурных расширений и пополнения утечек, на втулке несущего винта установлен компенсационный бачок (один на все демпферы), трубопроводами соединенный с гидродемпферами. Уровень АМГ-10 в бачке контролируется через прозрачный колпак из органического стекла и должен быть не выше риски, нанесенной на колпаке, и не ниже нижней кромки колпака. Суфлирование бачка осуществляется через отверстие диаметром около 3мм в верхней части колпака.

Чтобы жидкость из полостей цилиндра при работе гидродемпфера не перетекала в бачок, в крышке 7 демпфера установлен компенсационный клапан 8 , состоящий из двух больших шариков 14 и 12 и одного малого 13 (рис.4.12). При работе демпфера большой шарик 14 прижимается давлением жидкости к седлу, разобщая полость высокого давления с бачком, и через малый шарик 13 отжимает от седла большой шарик 12 , сообщая полость низкого давления с бачком. Такая конструкция обеспечивает проход пузырьков в бачок и отстой жидкости в нем.

Д. Маятниковый гаситель вибрации

Втулки несущего винта вертолетов Ми-171оборудуются маятниковыми гасителями вибрации (виброгасителями), устанавливаемыми с целью уменьшения уровня вибраций ряда систем и агрегатов, повышения эксплуатационной надежности и эффективности авиационного и радиоэлектронного оборудования и систем вооружения, а также для улучшения условий работы экипажа.

Виброгаситель состоит из кронштейна 15 , ступицы 3 и пяти маятников 7 .

Кронштейн 15 выполнен в виде конусного диска, в нижней части которого выполнены расточка для центрирования относительно корпуса втулки несущего винта и пять приливов с отверстиями под пальцы крепления виброгасителя. К верхнему фланцу кронштейна с помощью шпилек крепится ступица 3 виброгасителя. С наружной стороны кронштейна 15 выполнена кольцевая полость, которая совместно с закрепленным к ней колпаком из оргстекла образует компенсационный бачок 14 для питания гидродемпферов.

При установке виброгасителя на втулку вертолета штатный компенсационный бачок снимается.

Ступица 3 имеет пять рукавов с отверстиями по концам для монтажа на бифилярных подвесках пяти маятников 7 (бифилярная - [би…+ лат. Filum - нить]).

Каждая бифилярная подвеска представляет собой две роликовые связи, свободно посаженные в отверстия маятника и рукава ступицы. Для этого в отверстия маятников и рукавов ступицы запрессованы втулки 9 и 13 .

Позиции рисунка
«Устройство маятникового гасителя вибрации»

1 – Колпачок; 2 – Металлический зонт; 3 – Ступица;
4 – Болт; 5 – Ролик; 6 – Ограничители; 7 – Маятники;
8 – Обтекатель; 9 – Втулка; 10 – Ролик; 11 – Ролик;
12 – Шайбы; 13 – Втулка; 14 – Компенсационный бачок; 15 – Кронштейн; 16 – Пробка; 17 – Заливная горловина; 18 – Палец; 19 – Втулка несущего винта; 20 – Переходник; 21 – Болт.

Сочленение маятника со ступицей выполнено посредством двух одинаковых наборов, каждый из которых состоит из болта 4 , трех роликов 5 , 10 и 11 и двух специальных шайб 12 . Снаружи подвеска с маятником закрывается обтекателем 8 . Для предотвращения повреждения обтекателя при работе маятника внутри обтекателя установлены ограничители 6 .

Виброгаситель к втулке несущего винта 19 крепят специальными полыми пальцами 18 , ввернутыми в отверстия корпуса втулки. На пальцы насажены заливные горловины 17 с пробками 16 для заправки маслом горизонтальных шарниров. Для защиты токосъемника противообледенительного устройства несущего винта на верхней части диска ступицы 3 закреплен металлический зонт 2 с колпачком 1 . Центрирование кронштейна 15 производится переходником 20 , прикрепленным к втулке болтами 21 .

Принцип работы виброгасителя заключается в следующем.

При вращении несущего винта происходит плавная раскачка маятников. Возникающие при этом инерционные силы масс маятников оказывают сопротивление переменным нагрузкам в плоскости вращения, действующим на втулку несущего винта со стороны лопастей.

Подбор массы маятников и угла их установки (36 0 ± 30 ¢) по отношению к оси рукавов втулки несущего винта приводит к тому, что внешние переменные по величине и направлению силы в основном уравновешиваются за счет динамической реакции маятников виброгасителя.

РУЛЕВОЙ ВИНТ

Б. Втулка рулевого винта

Втулка рулевого винта состоит из:

Ø Ступицы;

Ø Корпуса втулки;

Ø Кардана, обеспечивающего наклон корпуса втулки от плоскости вращения на угол 11º в любом направлении;

Ø Осевых шарниров, уровень масла в контрольных стаканах которых должен быть между буртиками при положении лопасти вертикально вниз;

Ø Поводка с ползуном и тягами, обеспечивающего установку лопастей на требуемый угол.

В. Лопасть рулевого винта

Лопасть рулевого винта - смешанной конструкции. Основным ее силовым элементом является лонжерон, изготовленный из алюминиевого сплава АВТ-1 методом прессования.

К задней стенке лонжерона приклеена хвостовая часть лопасти, которая состоит из сотового заполнителя (такого же, как в лопастях несущего винта), стеклопластиковой обшивки толщиной 0,4мм и пластины вклеенной в обшивку по всей длине задней кромки лопасти.

В концевой части лопасти смонтирован обтекатель. На носовую часть лонжерона на 20% по хорде по всей длине наклеены две секции нагревательного элемента противообледенительной системы электротеплового действия. От механических повреждений нагревательная накладка сверху защищена слоем резины с оковкой из нержавеющей стали.

ТРАНСМИССИЯ ВЕРТОЛЕТА

Промежуточный редуктор

Промежуточный редуктор предназначен для изменения направления оси хвостового вала трансмиссии на угол 45 0 в соответствии с направлением концевой балки.

Изменение направления оси хвостового вала достигается применением в редукторе пары конических зубчатых колес с одинаковым количеством зубьев без изменения частоты вращения ведущего и ведомого валов редуктора.

Смазка промежуточного редуктора - барботажная. Избыточное давление воздуха из картера стравливается через суфлер, расположенный в его верхней части (слева). В картере имеется отверстие для магнитной пробки. Масло в редуктор заливается через штуцер масломерного щупа.

Для смазки редуктора применяется масло для гипоидных передач. В зимнее время масло разжижается гидросмесью АМГ-10 в соотношении 1:3 по объему. Контроль заправки редуктора маслом - по масломерному стеклу с рисками «В» и «Н» и с помощью щупа.

Рис. 4.1. Промежуточный редуктор

1 – Ведущая шестерня;

2 – Ведомая шестерня;

3 – Картер;
4 – Стакан ведущей шестерни;

5 – Стакан ведомой шестерни;
6 – Суфлер;

7 – Масломерное стекло;
8 – Приемник температуры масла П-1;
9 – Магнитная пробка (пробка-сигнализатор стружки ПС-1).

Основные технические данные редуктора:

Передаточное число 1;

Направление вращения, если смотреть со

стороны фланца ведущей шестерни левое;

Номинальная частота вращения валов 2594 об / мин;

Сухая масса редуктора 23,9-24,9кг;

Количество заливаемого масла 1,3л;

Хвостовой редуктор

Хвостовой редуктор предназначен для передачи вращения от хвостового вала к рулевому винту с заданной частотой вращения.

Передача мощности на рулевой винт осуществляется парой конических колес со спиральными зубьями, угол между осями вращения которых равен 90 0 .

Внутри картера редуктора, кроме конических колес, размещен узел механизма управления переменным шагом рулевого винта. Внутри ведомого вала размещается шток, с помощью которого производится изменение шага рулевого винта. Поступательное движение штока осуществляется за счет червячного механизма, получающего вращение от звездочки с винтовой внутренней нарезкой.

Смазка редуктора - барботажная.

Рис. 4.2. Хвостовой редуктор

1 – Фланец; 2 – Подшипник; 3 – Ведомое зубчатое колесо;
4 – Суфлер; 5 – Втулка со звездочкой; 6 – Ходовой винт; 7 – Картер; 8 – Ведущий вал; 9 – Втулка; 10, 11 – Подшипники;
12 – Ведущее зубчатое колесо; 13 – Подшипник; 14 – Шток управления рулевым винтом; 15 – Ведомый вал.

В редуктор заливается масло для гипоидных передач, в зимнее время разжиженное гидросмесью АМГ-10 в соотношении 1:3 по объему.

Контроль заправки редуктора маслом - по масломерному стеклу с рисками «В» и «Н» и с помощью щупа.

В картере редуктора имеются два отверстия под установку магнитных пробок.

Наличие двух магнитных пробок и двух масломерных стекол обеспечивает применение хвостового редуктора на вертолете Ми-8Т (с толкающим рулевым винтом).

Сверху в картер ввернут суфлер.

Основные технические данные редуктора:

Номинальная частота вращения:

o ведущего вала 2594 об / мин;

o вала рулевого винта 1120 об / мин;

Передаточное число 0,4318;

Направление вращения ведущего вала левое, если смотреть со стороны привода;

Направление вращения ведомого вала правое, если смотреть со стороны рулевого винта;

Сухая масса 57,9-59,2кг;

Количество заливаемого масла 1,7л;

Полный ход штока рулевого винта 67,75-69,15мм;

Температура масла на всех режимах не более 110 0 С.

Подогрев редукторов (промежуточного и хвостового) необходимо производить:

На неразжиженном масле - при понижении температуры наружного воздуха ниже +5 0 С до температуры агрегатов не менее +10 0 С;

На разжиженном масле - при понижении температуры наружного воздуха ниже -30 0 С до температуры агрегатов не менее -15 0 С.

4.4. Хвостовой вал трансмиссии

Хвостовой вал трансмиссии предназначен для передачи крутящего момента от главного редуктора через промежуточный и хвостовой редукторы к рулевому винту.

Хвостовой вал расположен на семи опорах, роль которых выполняют шариковые подшипники, и состоит из четырех шарнирных и двух жестких частей (передней и задней).

Соединение частей вала осуществляется с помощью шлицевых муфт и фланцев. Шлицевые муфты заполняются гипоидным маслом.

Средняя и концевая шарнирные части имеют подвижные шлицевые соединения, предназначенные для компенсации отклонений в линейных размерах фюзеляжа, хвостовой балки и хвостового вала, а также для обеспечения возможности изменения длины вала при изгибе балки в полете и удобства монтажа (демонтажа) упомянутых агрегатов.

Масса вала - 56-58кг.

Излом вала в шлицевых муфтах не должен превышать 1,2мм по индикатору измерителя.

Биение в любом пролете должно быть не более 0,45мм.

Тормоз несущего винта

Тормоз несущего винта предназначен для сокращения времени останова несущего винта после выключения двигателей, а также для стопорения трансмиссии при стоянке вертолета.

Тормоз - колодочного типа с механическим управлением. Его корпус установлен на корпусе главного редуктора, а тормозной барабан - на приводе рулевого винта механизма главного редуктора.

Управление тормозом будет рассмотрено в главе «УПРАВЛЕНИЕ ВЕРТОЛЕТОМ».

ГЛАВНЫЕ СТОЙКИ ШАССИ

А. Основные элементы стойки

В комплект каждой стойки входят:

Двухкамерный амортизатор;

Подкос-полуось;

задний подкос;

Б. Амортизатор

Амортизатор предназначен для поглощения кинетической энергии, выделяемой при ударе вертолета о землю во время посадки, а также для гашения поперечных колебаний типа «земной резонанс» путем проталкивания жидкости через специальные калиброванные отверстия.

Двухкамерный жидкостно-газовый амортизатор состоит из камер низкого и высокого давлений.

Камера низкого давления расположена в верхней части амортизатора, а камера высокого давления - в нижней.

Во время посадки вертолета первой срабатывает камера низкого давления, а после полного обжатия ее штока вступает в работу камера высокого давления.

Обратный ход в камере высокого давления совершается за счет аккумулированной азотом энергии после прекращения действия перегрузок.

Камера низкого давления на обратном ходе работает аналогично, но обратный ход штока может происходить лишь при поперечных колебаниях вертолета на своем шасси или при взлете, когда амортизаторы освобождаются от нагрузки.

Выход штоков камер высокого давления у незагруженного вертолета должен быть в пределах 240мм, при массе вертолета 11100-12000кг - 80-120мм. Штоки камер низкого давления при этом должны быть полностью обжаты.

В верхней части каждой амортизационной стойки на переходнике штока камеры низкого давления установлена разъемная каретка, в которой размещается микровыключатель АМ-800К, предназначенный для автоматического включения гидроупора в системе продольного управления при посадке и рулении, а также включения магнитофона МС-61 и РИ-65 в полете.

Г. Колеса главных стоек

Каждое из колес главных стоек состоит из барабана, пневматика и тормозного устройства.

Барабан колеса за одно целое с ободом, ступицей и одной ребордой (вторая - съемная) отлит из магниевого сплава. На обод барабана монтируется пневматик, состоящий из камеры и покрышки. При правильной зарядке пневматиков колес обжатие их у незагруженного вертолета не должно превышать 35-55мм, при массе вертолета 11100-11200кг - 60-80мм.

Тормозное устройство - колодочного типа. Имеет два воздушных цилиндра и две тормозные колодки. При торможении колес воздух из воздушной системы вертолета поступает в воздушные тормозные цилиндры.

Д. Обтекатель

Обтекатель придает необходимую аэродинамическую форму нижней части главных стоек шасси между полуосью и подкосом. Он изготовлен из листов дюралюминия, угловых профилей и вкладышей из пенопласта.

ПЕРЕДНЯЯ СТОЙКА ШАССИ

А. Основные элементы

Передняя стойка шасси - балочно-подкосного типа, имеет самоориентирующуюся рычажную подвеску колес, обеспечивающую лучшие условия работы амортизатора при рулении по неровной поверхности, и состоит из:

Рычажной амортизационной стойки;

Вильчатого подкоса;

Двух нетормозных колес;

Кулачкового механизма разворота колес.

Б. Амортизатор

При посадке вертолета усилие, действующее на колеса, передается через рычаг подвески колес и шатун на шток амортизатора, который совершает прямой ход. Жидкость из нижней полости штока плунжером вытесняется в верхнюю полость цилиндра амортизатора, сжимая азот.

При обратном ходе сжатый во время прямого хода азот выталкивает жидкость из верхней полости амортизатора через отверстия в поршне плунжера в нижнюю полость штока.

Обжатие штока амортизатора по шкале указателя у незагруженного вертолета должно быть в пределах 55-75мм, при массе вертолета 11100-11200 кг - 120-140 мм.

В. Механизм разворота колес

Механизм разворота колес предназначен для разворота передних колес в линию полета при разгруженной передней амортстойке.

Когда на передние колеса действует нагрузка, шток амортизатора перемещен вверх, и кулачки механизма разворота разобщены между собой.

Когда передние колеса разгружаются, то под давлением газа шток амортизатора перемещается вниз, и верхний кулачок входит в соприкосновение с нижним кулачком механизма, разворачивая тем самым передние колеса в линию полета.

Г. Колеса передней стойки

Передние колеса отличаются от колес главных стоек размерами и отсутствием тормозного устройства, а в остальном выполнены аналогично.

Обжатие пневматических устройств передних колес у незагруженного вертолета должно быть в пределах 20-40мм, при массе вертолета 11100-11200кг - 35-55мм.

Хвостовая опора

Хвостовая опора предназначена для предохранения лопастей рулевого винта от повреждений при посадке вертолета с большим углом кабрирования.

В комплект хвостовой опоры входят амортизатор, два подкоса и пята.

Амортизатор состоит из цилиндра и штока.

При ударе хвостовой опоры о землю цилиндр амортизатора движется вверх, и шток вытесняет жидкость из полости цилиндра в кольцевую полость, образованную цилиндром и штоком.

При обратном ходе цилиндр амортизатора возвращается в исходное положение под давлением азота.

Подкосы хвостовой опоры выполнены из дюралюминиевых труб.

Пята отштампована из алюминиевого сплава.

На вертолете МИ-8МТВ5 хвостовая опора усилена (трубы, из которых выполнены подкосы и амортизатор имеют больший диаметр).

УПРАВЛЕНИЕ ВЕРТОЛЕТОМ

Состав системы управления

Управление вертолетом относительно трех осей осуществляется путем изменения величины и направления силы тяги несущего винта и изменения силы тяги рулевого винта.



В состав системы управления вертолетом входят:

Ø двойное продольно-поперечное управление, в котором две ручки кинематически связаны между собой и с автоматом перекоса;

Ø двойное путевое управление, в котором педали кинематически связаны между собой и с механизмом изменения шага РВ;

Схема втулки - пятилопастная, с разнесенными и повернутыми горизонтальными шарнирами, с разнесенными вертикальными шарнирами, с осевыми шарнирами.

Конструкция втулки выполнена таким образом, что при взмахе лопасти относительно горизонтального шарнира на угол Y происходит уменьшение истинного угла установки лопасти на величину Z = KY . Коэффициент пропорциональности K называется коэффициентом компенсатора взмаха.

С целью уменьшения свеса лопастей и создания необходимых зазоров между лопастями и хвостовой балкой при малой частоте вращения несущего винта в конструкцию втулки введены центробежные ограничители свеса лопастей.

Рис. 3.4. Схема втулки несущего винта

Схема втулки представлена на рис.3.4. На рисунке обозначены:

1 Вал редуктора; 2 Нижнее кольцо; 3 Корпус втулки; 4 Верхнее кольцо; 5 Гайка; 6 Шлицы; 7 Палец вертикального шарнира; 8 Корпус осевого шарнира; 9 Цапфа осевого шарнира; 10 Тяга разворота лопасти; 11 Палец горизонтального шарнира; 12 Проушина; 13 Скоба; 14 Демпфер вертикального шарнира; 15 Кронштейн крепления демпфера; 16 Рычаг поворота лопасти.

lгш – Разнос горизонтальных шарниров;

lвш – Разнос вертикальных шарниров;

А – Точка крепления тяги автомата перекоса к поводку осевого шарнира;

Q – Аэродинамическая сила;

R – Равнодействующая сила;

Fцб – Центробежная сила.

Основные технические данные втулки:

§ разнос вертикальных шарниров 507мм;

§ смещение середины проушины горизонтального шарнира 45мм;

§ величина коэффициента компенсатора взмаха 0,5;

§ угол взмаха вверх от плоскости, перпендикулярной оси вращения относительно ГШ 24,5-25,5 0 ;

§ угол свеса вниз от плоскости, перпендикулярной оси вращения относительно ГШ:

При упоре на скобу 3 0 40¢-4 0 10¢;

При упоре на собачку ЦОС 1 0 40¢-2 0 .

§ угол поворота относительно вертикального шарнира:

По вращению 12 0 15¢-13 0 15 ¢ ;

Против вращения 10 0 50¢-11 0 10 ¢ .

§ частота вращения НВ, при которой срабатывает центробежный ограничитель свеса (ЦОС):

При разгоне 105-111 об / мин (52-55%);

При торможении 92-98 об / мин (45,5-48,5%).

§ угол наклона оси НВ (вперед) 4 0 20¢-4 0 30¢;

§ диаметр втулки НВ 1744мм;

§ масса втулки НВ 610кг.

Основными узлами втулки несущего винта являются:

1. Корпус втулки, имеющий пять проушин, лежащих в одной плоскости под углом 72 0 друг к другу.

2. Пять скоб, проушины которых в соединении с проушинами корпуса втулки с помощью пальцев и игольчатых подшипников образуют горизонтальные шарниры.

3. Пять цапф осевых шарниров, которые в соединении с проушинами скоб образуют вертикальные шарниры.

4. Пять корпусов осевых шарниров, смонтированных на цапфах осевых шарниров с помощью подшипников.

5. Рычаги поворота лопастей, смонтированные на корпусах осевых шарниров.

6. Центробежные ограничители свеса лопастей, смонтированные в проушинах скоб.

7. Гидродемпферы, служащие для гашения колебаний лопастей относительно вертикальных шарниров и подпитываемые гидросмесью из компенсационного бачка, уровень жидкости, в котором должен находиться между верхней риской и нижней кромкой колпака.

Примечание: Втулки несущего винта вертолетов типа Ми-171 оборудуются осевыми шарнирами с магнитной пробкой и смотровым стаканчиком. Масло в шарнире должно быть прозрачным (видна противоположная стенка стаканчика).

Рис.3.5. Шарниры втулки несущего винта

1 – Заправочное отверстие осевого шарнира; 2 – Заправочное отверстие горизонтального шарнира; 3 – Заправочное отверстие вертикального шарнира.

Уровень масла в шарнирах втулки (от кромки заливных отверстий):

v в горизонтальных шарнирах 30-40мм;

v в вертикальных шарнирах 25-35мм;

v в осевых шарнирах 15-20мм.

В течение летного дня допускается снижение уровня масла в шарнирах:

v в горизонтальных шарнирах на 20мм;

v в вертикальных шарнирах на 20мм;

v в осевых шарнирах на 15мм.

Основные детали втулки несущего винта

А. Корпус

Корпус втулки сочленяется с валом главного редуктора шлицами 6 и закрепляется на нем гайкой 5 . Затяжку гайки производят специальным тарировочным ключом. Корпус имеет пять проушин 12 , лежащих в одной плоскости под углом 72° друг к другу.

Б. Горизонтальные шарниры

Пять скоб втулки 13 (рис.4.6) в соединении с проушинами корпуса 12 с помощью пальцев 11 и игольчатых подшипников образуют горизонтальные шарниры. Смещение проушин горизонтальных шарниров а, выбрано таким образом, чтобы на основных режимах полета равнодействующая R аэродинамических Q и центробежных сил F цб лопасти была направлена примерно по середине горизонтального шарнира. Такая конструкция обеспечивает более равномерное распределение нагрузки между игольчатыми подшипниками ГШ и существенно повышает их долговечность. Принципиальное устройство горизонтального шарнира представлено на рис.4.7.

Рис.4.7. Горизонтальный шарнир втулки несущего винта

1 – Проушина корпуса втулки;

2 – Палец горизонтального шарнира;
3, 7 – Резиновые уплотнительные кольца;

4 – Игольчатые подшипники;
5 – Проушины скобы;

6 – Распорные кольца

В. Вертикальные шарниры

Пять цапф осевых шарниров 9 (рис.4.6) в соединении с проушинами скоб 13 с помощьюпальцев образуют вертикальные шарниры.

Г. Осевые шарниры

На втулке имеются пять корпусов осевых шарниров 8 (рис.4.6), смонтированных на цапфах 9 .

Конструкция осевого шарнира показана на рис.4.8.

Рис.4.8. Осевой шарнир втулки несущего винта

1 – Цапфа осевого шарнира; 2 – Резиновое уплотнительное кольцо;
3, 9 – Упорные гайки; 4, 8 – Шариковые подшипники; 5 – Заливная пробка; 6 – Корпус шарнира; 7 – Роликовый подшипник; 10 – Гребенка;
11, 12, 15 – Распорные втулки; 13 – Сливная пробка; 14 – Резиновая манжета; 16 – Смотровой стаканчик; 17 – Компенсатор давления в шарнире; 18 - Заглушка

Корпус осевого шарнира 6 имеет возможность проворачиваться относительно цапфы 1 на трех подшипниках. Два шариковых подшипника 4 и 8 воспринимают изгибающие моменты от лопасти, а роликовый 7 – центробежные силы.

На днище стакана осевого шарнира имеется "гребенка" 10 с проушинами для крепления лопасти. Шарнир оборудуется сливной магнитной пробкой 13 со смотровым стаканчиком 16 . Масло в шарнире должно быть прозрачным (видна противоположная стенка стаканчика).

На заливную пробку 5 устанавливается компенсатор давления 17 , за счет прогиба мембраны увеличивающий свой объем при повышении давления в шарнире.

В настоящее время, в соответствии с конструктивной доработкой, при изготовлении втулки в пустотелую цапфу ОШ устанавливается гофрированный резиновый «чулок», выполняющий функцию компенсатора давления (рис. 4.8а, поз. 17). Компенсатор давления в шарнире (поз.17, рис. 4.8) при этом демонтируется.

Рис.4.8а. Осевой шарнир модифицированной втулки несущего винта

17 – Резиновый чулок

Д. Рычаги поворота лопастей

Рычаги поворота лопастей смонтированы на корпусах осевых шарниров и крепятся к тягам 6 (рис.4.1) тарелки автомата перекоса.

Примечание: При выполнении целевых периодических осмотров рычагов поворота лопастей ИТС применять лупу семикратного увеличения.

Втулка несущего винта предназначена для передачи вращения ло­пастям винта от вала главного редуктора и восприятия и передачи на фюзеляж аэродинамических сил, возникающих на несущем’ винте.

Втулка несущего винта вертолета Ми-4 имеет разнесенные горизон­тальные шарниры, а также вертикальные и осевые шарниры. Подоб­ное сочленение лопастей со втулкой винта дает им возможность коле­баться относительно горизонтальных н вертикальных шарниров под дей­ствием приложенных к ним переменных аэродинамических и инерцион­ных сил при полете вертолета с поступательной скоростью. В результа­те этого значительно уменьшаются величины переменных напряжений в лопастях несущего винта. Горизонтальные шарниры, кроме того1, ‘Ис­ключают действие момента от аэродинамических сил на фюзеляж. Ко­лебания лопасти относительно оси вертикального’ шарнира демпфируют­ся фрикционным демпфером.

Для изменения углов установки лопастей последние имеют шарнир­ную заделку во втулке («осевой шарнир»).

Таким образом, сочленение лопастей с корпусом втулки несущего винта и, соответственно, с валом главного редуктора осуществляется посредством трех шарниров. Для повышения устойчивости движения лопасти и улучшения характеристик вертолета предусмотрена кинема­тическая связь между углами установки лопасти и ее отклонением от­носительно горизонтального шарнира («углом взмаха»); втулка имеет так называемый «компенсатор взмаха».

В конструкцию втулки1 несущего винта включен также механизм центробежного ограничителя свеса лопастей. Этот механизм дает воз­можность лопастям, имеющим при неподвижном винте угол свеса рав­ным 1°4(У (отклонение вниз от плоскости, перпендикулярной оси вала редуктора), увеличивать это значение до величины 4° при вращающемся несущем винте.

Ограничение свеса необходимо для увеличения зазора, между хво­стовой балкой и концом лопасти при незначительной скорости вращения ■несущего’ винта при его запуске и остановке. Этот зазор определяется прогибом лопасти при стоянке и при вращении ее с малыми оборотами,

При вращении несущего винта на рабочих скоростях лопасть под действием центробежных и аэродинамических сил поднимается и полу­чает прогиб вверх, что значительно’ увеличивает зазор между ее концом и хвостовой балкой.

Во избежание удара по упору горизонтального шарнира при различ­ных эволюциях в условиях полета лопасть при вращающемся несущем винте имеет возможность перемещаться на 4° вниз от плоскости, перпен­дикулярной оси вала.

Основными деталями втулки несущего винта (фиг. 169)

13 Зак — 740

Фиг 169. Втулка несущего винта.

1-корпус втулки; 2-скоба; 3-цапфа осевого шарнира; 4-корпус осевого шарнира; 5-рычаг лопасти; 6-нижнее конусное кольцо; 7-верхнее ко­нусное кольцо; 8-гайка вала ‘несущего винта; 9-штифт контровочный; 10, 52 и 53-пробка; 11-наружное кольцо игольчатых подшипников гори­зонтального шарнира; 12-внутреннее кольцо игольчатого подшипника; 13, 20, 46-распорная втулка; 14-палец горизонтального шарнира; 15- тайка пальца горизонтального шарнира; 16-’бронзовая шайба горизон­тального шарнира; 17, 18, 39, 40, 41, 54, 55-уплотнительные кольца; 19- наружное кольцо игольчатых подшипников вертикального шарнира; 21- бронзовая шайба вертикального шарнира; 22-палец вертикального шар­нира; 23-внутренний барабан демпфера; 24-гайка пальца вертикального шарнира; 25-наружный барабан демпфера; 26-болт крепления наружного барабана; 27-диск промежуточный большой; 28-диск промежуточный ма­лый; 29--верхний диск; 30-диск фрикционный; 31-диск нажимной; 32- пружина демпфера; 33- — диск лнужин; 34-.регулировочный болт; 35-кры­шка демпфера; 36 и 56-сальник, 37-поршень; 38-пружина поршня, 42-кольцо; 43-гайка корпуса осевого шарнира; 44 и 51-регулировочное кольцо; 45-шарикоподшипник радиальный; 47-шарикоподшипник упор­ный; 48-гайка цапфы осевого шарнира; 49-штифт; 50-шарикоподшип­ник радиальный; 57-манжета; 58-болт крепления рычага лопасти; 59- втулка; 60-двухрядный шарикоподшипник; 61-шарикоподшипник; 62- валик шарнира рычага; 63-крышка шарнира рычага.

корпус втулки 1, скоба 2 (4 шт.), цапфа 3 осевого шарнира, корпус 4 осевого шарнира и рычаги1 5 лопасти.

Корпус втулки имеет в центре отверстие с эвольвентными шлицами, которыми он надевается на вал главного редуктора и центрируется па нелт двумя конусными кольцами 6 и 7. Нижнее конусное кольцо 6 брон­зовое и имеет один разрез. Верхнее конусное кольцо. 7 стальное и со­стоит из двух половин. Гайка 8 навинчивается на вал ‘редуктора и за­крепляет корпус через конусные кольца на вале. Гайка предохраняется от отвинчивания тремя штифтами 9.

Корпус втулки. 1 имеет четыре широких проушины (по числу лопа­стей). Оси проушин лежат в одной плоскости под углом 90° друг к дру­гу. Середины проушин смещены с радиального положения на 60 мм.

В верхней части корпус имеет фланец с отверстиями для крепления коллектора противообледенителя, а снизу - ушки для присоединения поводка тарелки автомата-перекоса.

В проушинах корпуса монтируются игольчатые подшипники гори­зонтальных шарниров, по два подшипника в каждой. Наружное коль­цо 11, общее для обоих подшипников, вставлено, в проушину и фикси­руется от проворачивания эвольвентными шлицами, имеющимися как в буртике наружного1 кольца, так и в проушине корпуса. Внутренние кольца игольчатых подшипников 12 имеют по краям буртики для осевой фиксации игл. Иглы размером 5X50 набраны по 106 шт. в каждом под­шипнике. Между внутренними кольцами подшипников помещена распор­ная втулка 13.

Проушина корпуса с игольчатыми подшипниками охватывается с двух сторон проушинами скобы 2. Через проушины скобы и внутрен­ние кольца подшипников пропущен палец 14 горизонтального шарнира.

Узел стягивается гайкой 15. Палец удерживается от проворачивания в проушине скобы сегментной шпонкой. Для восприятия осевых усилий, которые возникают при отклонениях лопасти от направления, перпенди­кулярного оси шарнира, между торцами проушин корпуса и скобы уста­новлены бронзовые шайбы 16.

Для ограничения поворота сочленения лопасти в горизонтальном шарнире на корпусе 1 втулки и скобе 2 имеются специальные упоры. Поворот сочленения вверх от плоскости, перпендикулярной оси вала ре­дуктора, возможен па 25° и вниз в условиях полета на 4°. Имеющиеся на корпусе резьбовые отверстия, закрытые пробками 10, предназначены для заливки масла в горизонтальные шарниры. Масло попадает в по­лость корпуса, а оттуда по сверлениям в кольцах И в игольчатые под­шипники. Резиновые кольца 17 и 18 служат для уплотнения масляной полости горизонтального1 шарнира.

Скоба 2 представляет собой деталь коробчатого сечения, имеющую на одном конце две проушины для соединения с корпусом 1 и две проу­шины на другом конце для соединения с цапфой 3 осевого шарнира. Ось первых проушин на скобе перпендикулярна оси двух других. Во внутренней полости скобы монтируется механизм центробежного1 огра­ничителя. Соединение скобы г цапфой осевого шарнира образует верти­кальный шарнир И1 выполнено аналогично горизонтальному шарниру. Наружное кольцо 19, общее для обоих подшипников, вставлено в цап­фу 3. Внутренние кольца, так же как и в горизонтальном шарнире, соб­раны СО’ 106 иглами того же размера. Между ними поставлена распор — пая втулка 20. Цапфа 3 с игольчатыми подшипниками и плоскими брон­зовыми шайбами 21 вставляется в проушины скобы, и через них и со­прягаемые детали пропускается палец 22 вертикального шарнира.

Па верхней проушине скобы имеются торцевые шлицы. Такие же шлицы имеются на внутреннем барабане 23 демпфера, который уста- 196

ншшшастся па проуїшгау скобы п прижимается к шлицам гайкой 24, патшчеішой на палец 22 и стягивающей весь узел.

Цапфа’ 3 имеет возможность поворачиваться вокруг ості вертикаль­ного шарнира от направления, перпендикулярного оси горизонтального шарнира, ‘на угол ЇЗДО’ вперед по вращению и на 6°40/ назад. Даль­нейший поворот ограничивается упорами, имеющимися на цапфе и на скобе.

Цапфа 3 осевого шарнира, помимо вертикальной цилиндрической части, в которую монтируются игольчатые подшипники вертикального шарнира, имеет хвостовик с резьбой, на который установлены и закреп­лены подшипники осевого шарнира лопасти. У вертикальной цилиндри­ческой части цапфы имеются вверху две площадки с торцевыми шли­цами для крепления наружного барабана демпфера. Наружный бара­бан 25 демпфера также имеет две площадки с торцовыми шлицами, ко­торыми барабан сочленяется со шлицами цапфы (см. разрез по. ББ). Наружный барабан демпфера притягивается к цапфе четырьмя болта­ми’ 26.

Наружный барабан демпфера имеет на своей внутренней поверхно­сти эвольвентные шлицы; внутрь барабана вставлены три промежуточных стальных диска 27, имеющих такие же шлицы по наружной поверхности.

Внутренний барабан 23 демпфера на своей наружной поверхности так­же имеет эвольвентные шлицы, на. которые надеваются два промежуточ­ных стальных диска 28 и верхний диск 29.

Таким образом, часть дисков связана со скобой, а другая часть с цапфой осевого шарнира. Между стальными дисками, связанными с различными элементами узла, проложены фрикционные плавающие дис­ки 30 из асбокартона, по шесть штук в каждом сочленении. На верхний диск 29 опирается нажимной диск 31, в котором размещены по окруж­ности восемнадцать спиральных цилиндрических пружин 32.

На пружины накладывается диск 33, имеющий цилиндрический хво­стовик, который проходит внутри пальца вертикального’ шарнира и имеет па конце резьбу для регулировочного болта 34 демпфера.

Регулировочный болт демпфера, опираясь заплечиками в палеи вертикального шарнира, подтягивает диск 33 и через пружины нажи­мает на пакет дисков демпфера. Таким образом можно регулировать ве­личину нажатия пружин, а с нею и величину момента трения демпфера.

При колебаниях лопасти относительно вертикального шарнира меж­ду дисками возникает трение, которое гасит эти колебания.

Демпфер регулируется на момент трения около 200 кгм. Демпфер сверху закрывается крышкой 35. Между наружным и внутренним бара­банами демпфера имеется уплотнительный сальник 36 из фетра.

Таким образом, демпфер полностью защищен от попадания грязи и влаги, что обеспечивает постоянство момента трения.

Вертикальный шарнир смазывается через прессмасленку в болте 34 демпфера. Зашприцованное масло через сверление в хвостовике дис­ка 33 и в пальце 22 вертикального шарнира поступает в игольчатые подшипники. Под давлением масла поршень 37 сжимает пружину 38. В дальнейшем по мере расходования масла оно поступает в игольчатые подшитіики под давлением этой пружины.

Уплотнение масла в вертикальном шарнире осуществляется резино­выми кольцами 39, 40 и 41.

Полость вертикального шарнира, заполняемая маслом, соединяется с атмосферой клапаном, который предохраняет резиновые уплотнения шарнира от выдавливания, а также служит для выпуска воздуха из этой полости в атмосферу при зашприцовке масла в этот узел.

Осевой шарнир лопасти образуется двумя основными деталями: цап­фой 3 и корпусом 4 осевого шарнира. Корпус выполнен в виде стакана, на днище которого имеется гребенка с проушинами для крепления ло­пасти. На другом конце стакана имеется внутренняя резьба для гай­ки 43.

На хвостовик цапфы напрессовано кольцо 42, служащее поверхно­стью трения манжеты и фетрового сальника гайки 43. На хвостовик цап­фы при сборке последовательно надеваются гайка 43, регулировочное кольцо 44, радиальный шарикоподшипник 45, распорная втулка 46, упорный шарикоподшипник 47, и весь пакет закрепляется гайкой 48, которая предохраняется от отвинчивания штифтом 49. На цилиндриче­скую часть гайки 48 устанавливается второй радиальный шарикопод-

шинник 50. Цапфа с закрепленными на ней подшипниками вставляется в корпус осевого шарнира 4 и закрепляется в нем гайкой 43. Между днищем корпуса и радиальным подшипником 50 находится регулировоч­ное кольцо 51. За счет толщины кольца 51 регулируют преднатяг узла подшипников 50 и 47. Пробка 52 закрывает отверстие для заливки мас­ла в осевой шарнир. Отверстие, закрытое пробкой 53, служит для сли­ва масла.

Резиновые кольца 54 и 55 ставятся е целью герметизации осевого шарнира между деталями, не имеющими в работе относительных пере­мещений. В гайке 43 поставлены фетровый сальник 56 и резиновая ман­жета 57.

К корпусу осевого шарнира четырьмя болтами 58 (ем. вид по стрел­ке Г, фиг. 169) крепится рычаг 5 лопасти. Болты 58 разгружены от срезывающих усилий втулками 59. Конец рычага лопасти имеет цилинд — 198 рическую полость, в которой на двух шарикоподшипниках 60 и 61 установлен валик 62 шарнира, закрепленный крышкой 63, притянутой к рычагу четырьмя болтами.

В головке валика шарнира запрессованы два шарикоподшипника. Шарнир рычага лопасти смазывается через масленку на головке валика.

Устройство центробежных ограничителей свеса показано п фиг. 170. Противовес 3 подвешен к скобе на оси 7 и через стакан е цапфами, и тягу 6 соединяется с одним концом собачки 1. Осью вра­щения собачки является палец 2, пропущенный через проушины скобы. Второй конец собачки служит упором, ограничивающим свес лопасти. При оборотах несущего винта ниже~ 100 об/мии пружина 4 удержи­вает собачку и противовес в положении, изображенном на схеме (угол свеса лопасти при этом равен 1°40′). При достижении 100 об/мин проти­вовес под действием центробежной силы начинает поворачиваться, сжи­мает пружину и поворачивает собачку.

Когда скорость вращения несущего винта достигает значения при­мерно 120 об/мин, собачка полностью отходит от скобы; между упором корпуса и собачкой образуется зазор (не менее 4 мм при нулевом угле свеса) и свес лопасти ограничивается только постоянными упорами ско­бы, которые позволяют ей отклоняться вниз на 4°.

При падении скорости вращения винта примерно до 120 об/мин на­чинается обратное движение механизма, в при 100 об/мин собачка при­ходит в положение, соответствующее углу свеса лопасти 1°40/.

Изобретение относится к вертолетостроению. Втулка несущего винта вертолета состоит из корпуса и узла подвески лопасти, включающего цапфу с подшипником, кожух с рычагом поворота лопасти, соединитель лопасти и эластомер. Цапфа узла подвески лопасти неподвижно соединена с корпусом втулки и снабжена самоориентирующимся двухрядным подшипником, внешняя обойма которого соединена с кожухом. Эластомер одним концом неподвижно соединен с цапфой, а другим концом с соединителем лопасти. Эластомер снабжен металлическими втулками и армирован высокопрочными нитями, соединяющими попарно металлические втулки, размещенные по каждую сторону от оси симметрии эластомера. Изобретение направлено на упрощение конструкции. 1 з.п. ф-лы, 2 ил.

Изобретение относится к вертолетостроению и служит для крепления лопастей и передачи им крутящего момента с вала редуктора, а также для восприятия и передачи на фюзеляж сил и моментов, создаваемых лопастями.

Известно, что классический узел подвески лопасти включает в себя: корпус втулки, горизонтальные, вертикальные и осевые шарниры, связанные при помощи соединителя с лопастями. Вертикальные шарниры снабжены демпферами (Фатеев С.С. «Основы конструкции вертолетов», Москва, Военное издательство, 1990, стр.57). Корпус втулки имеет шлицевое соединение с валом редуктора. Обычно с корпусом втулки соединяют горизонтальный шарнир, к нему вертикальный шарнир, а к нему осевой шарнир. Осевой шарнир по сути является узлом подвески лопасти и включает цапфу, на которой установлено несколько радиальных и упорных шарикоподшипников, распорные втулки и гайки для фиксации подшипников. Сверху узел подвески закрыт кожухом, снабженным рычагом поворота лопасти. Узел подвески также включает соединитель лопасти. Цапфа узла подвески подвижно установлена на оси вертикального шарнира. Приведенная втулка конструктивно близка к конструкции предлагаемого изобретения и может быть выбрана в качестве прототипа.

Недостатком приведенной втулки является множество сочлененных меж собой шарниров с целью придания лопастям необходимых степеней свободы, а также проведение периодического осмотра и смазки.

Известна также бесшарнирная втулка несущего винта с эластомерным подшипником или втулка типа «Старфлекс». Втулка содержит корпус, слоистый эластомер, шаровую опору, рукав втулки. Эластомерный подшипник выполняет функции всех трех шарниров и представляет собой набор чередующихся металлических и резиновых сферических прокладок. Они работают на сжатие от центробежной силы, на сдвиг при маховом движении и на кручение при изменении угла установки лопастей.

Недостатки эластомерных подшипников заключаются в низкой надежности сцепления металлических и резиновых прокладок. Такой подшипник может разрушиться под воздействием больших центробежных сил, создаваемых вращающимися лопастями, что требует включения в конструкцию дополнительно специальных скоб крепления лопастей.

Предлагаемое изобретение направлено на упрощение конструкции втулки несущего винта (НВ), увеличение ресурса работы и надежности.

Поставленная задача достигнута тем, что цапфа узла подвески соединена с корпусом втулки неподвижно, а на цапфе установлен самоориентирующийся двухрядный подшипник (ГОСТ 28428-90). Отличительная особенность такого подшипника в том, что его внешняя обойма может быть шарнирно повернута в любую сторону относительно геометрического центра подшипника, значит и относительно внутренней обоймы подшипника. Таким образом, шарнир такой конструкции является универсальным и совмещает в себе функции всех трех шарниров, обеспечивая достаточное количество степеней свободы, и может быть отклонен в любую сторону относительно оси цапфы. Эластомер представляет собой цельнотельный (литой, прессованный, вулканизированный и т.д) элемент. Эластомером или резиной называют любой упругий материал (полимер), обладающий в диапазоне эксплуатации высокоэластичными свойствами, который может растягиваться до размеров, во много раз превышающих его начальную длину, и возвращаться к исходному размеру, когда нагрузка снята. В данном случае эластомер предназначен для восприятия центробежных нагрузок на узел подвески, а также полностью разгружает от этих нагрузок внешнюю обойму самоориентирующегося подшипника. Кроме того, эластомер возвращает узел подвески в исходное положение после снятия нагрузки. В предложенной конструкции эластомер одним концом неподвижно соединен с цапфой, а другим концом с узлом соединения лопасти. Эластомер снабжен металлическими втулками, посредством которых осуществляется крепеж болтами, а материал эластомера армирован высокопрочными нитями (например, кордовыми или кевларовыми нитями), соединяющими попарно втулки, размещенные вдоль оси симметрии эластомера. Нити принимают на себя основную нагрузку, исключая возможность разрыва эластомера под воздействием центробежных сил. В то же время нити не препятствуют работе эластомера на сжатие от центробежной силы, на сдвиг при маховом движении и на кручение при изменении угла установки лопастей.

Один из возможных вариантов конструкции втулки представлен на чертежах. На фиг.1 приведен сборочный чертеж втулки, на фиг.2 приведено устройство эластомера.

Втулка несущего винта вертолета включает корпус втулки 1, к которому неподвижно соединена цапфа 2 узла подвески. На шейке цапфы установлен самоориентирующийся двухрядный подшипник 3. Гайка 4 фиксирует внутреннюю обойму подшипника. На внешней обойме подшипника установлен кожух 5, снабженный рычагом 6 поворота лопасти. К кожуху при помощи крепежа соединен фланец соединителя лопасти 7. Внутри цапфы соосно установлен эластомер 8. Эластомер снабжен металлическими втулками 9-12, размещенными по обе стороны от оси симметрии. Эластомер прикрепляется неподвижно к цапфе и узлу соединения лопасти при помощи болтового соединения 13. Эластомер армирован высокопрочными нитями (на чертеже не показаны). Нити попарно обведены вокруг металлических втулок (9-10, 11-12) и вулканизированы совместно с материалом эластомера.

Втулка работает следующим образом.

Корпус втулки 1 вращается вместе с узлом подвески лопасти. При помощи рычага общего шага приводится в действие тяга общего шага, соединенная с рычагом 6 поворота лопасти. При этом рычаги 6 поворота лопастей поворачивают вокруг своих осей одновременно все узлы подвески, устанавливая лопасти под одним и тем же углом. Так осуществляется управление общим шагом несущего винта.

Направление же силы тяги вертолета изменяется наклоном плоскости вращения НВ за счет циклического изменения углов установки лопастей в зависимости от их азимутального положения. Осуществляется это при помощи ручки управления вертолетом. При этом связанные с ручкой управления тяги продольного и поперечного управления наклоняют тарелку автомата перекоса и тяги относительно оси вала НВ. Так как тяги связаны с рычагами 6 поворота лопастей, узлы подвески поднимаются и наклоняются, вращаясь на подшипнике 3, вызывая циклическое изменение углов установки лопастей относительно среднего значения шага. Циклическое изменение углов установки и соответствующее изменение силы тяги лопастей вызывает маховое движение лопастей, т.е наклон конуса вращения НВ. Возникающие при маховом движении лопастей центробежные силы и изгибающие моменты воспринимаются эластомерами 8. При снятии нагрузки эластомеры возвращают узлы подвески и связанные с ними через соединитель 7 лопасти в исходное состояние.

1. Втулка несущего винта вертолета, состоящая из корпуса и узла подвески лопасти, включающего цапфу с насаженным на нее подшипником, кожух с рычагом поворота лопасти, соединитель лопасти и эластомер, отличающаяся тем, что цапфа узла подвески лопасти неподвижно соединена с корпусом втулки и снабжена самоориентирующимся двухрядным подшипником, внешняя обойма которого соединена с кожухом.

2. Втулка несущего винта вертолета по п.1, отличающаяся тем, что эластомер одним концом неподвижно соединен с цапфой, а другим концом с соединителем лопасти, снабжен металлическими втулками и армирован высокопрочными нитями, соединяющими попарно металлические втулки, размещенные по каждую сторону от оси симметрии эластомера.

от системы предупреждения появления трещин. Лопасти имеют большой ресурс, но весьма сложны в производстве.

Рисунок 16. Сечение многолонжеронной лопасти несущего винта.

1 – лонжероны, 2 – слои стеклоткани, 3 – сотовый заполнитель.

Композиционные лопасти. Композиционные лопасти, на сегодняшний день, являются самыми распространенными в мире. В России их применяют на вертолетах Ми-28, Ми-34, Ка-50 и др. Конструкции композиционных лопастей весьма многообразны. Сечения некоторых из них представлены на рисунке 17.

Достаточно простые лопасти подразумевают использование С–образного лонжерона и пористого (рисунок 17а) или сотового (рисунок 17б) заполнителя. Более сложные лопасти имеют многозамкнутый лонжерон и приклеенную хвостовой отсек. Пример сечения такого лонжерона показан на рисунке 17в, г, д. Промежуточные стенки, установленные в канале многозамкнутого лонжерона, увеличивают жесткость пустотелой лопасти. Такие лонжероны обладают высокой живучестью, так как при разрушении лонжерона в районе одной из полостей другие могут сохранять несущую способность. Хвостовой отсек лопасти, в настоящее время, чаще делается неразрезным, что значительно упрощает конструкцию.

В качестве материалов изготовления лонжеронов и лопастей используются угле, стекло, органопластики или их комбинации.

Рисунок 17. Сечение композиционных лопастей несущего винта.

а – вертолета ЕС145, б – ЕС332 МК2, в – Ка-50, г - ЕС225,

д - NH90.

1 – стеклопластиковый лонжерон, 2 – пористый заполнитель, 3 – углепластиковое покрытие, 4 – сотовый заполнитель.

2.6. Втулки несущих винтов

Втулка несущего винта вертолета осуществляет передачу крутящего момента от главного редуктора к лопастям несущего винта, при этом выполняя ряд других функций.

По способу крепления лопасти к валу, вращающему винт, несущие винты, можно подразделить на несколько типов.

Несущие винты с трехшарнирной подвеской лопастей (рисунок 18а) и втулкой с универсальным эластомерным подшипником (рисунок 18д) применяются на вертолетах разных

классов. Винт с общим горизонтальным шарниром (рисунок 18б) весьма распространен на сверхлегких и легких вертолетах. В некоторых случаях применяются винты на кардане (рисунок 18в) и с жестким креплением лопастей (рисунок 18г).

Втулки несущего винта с трехшарнирным креплением лопастей широко применялись в вертолетостроении. В настоящее время их использование сокращается, и на новых аппаратах они, практически, не встречаются. В России такие втулки использовались на вертолетах Ми-2, Ми-24, Ми-26 и др. Втулка имеет разнесенные горизонтальные (ГШ), вертикальные (ВШ) и осевые (ОШ) шарниры (рисунок 19). Подобное соединение лопасти дает ей возможность колебаться в нескольких плоскостях.

Рисунок 18. Типы несущих винтов.

а – с трехшарнирной подвеской лопастей; б – с общим горизонтальным шарниром; в – на кардане; г – с жестким креплением лопастей; д- с эластомерным подшипником.

1 – горизонтальный шарнир (ГШ), 2 – вертикальный шарнир (ВШ), 3 – осевой шарнир (ОШ), 4 – общий горизонтальный шарнир, 5 – кардан, 6 – эластомерный подшипник, 7- торсион.

Горизонтальные шарниры обеспечивают маховое движение (колебания в вертикальной плоскости) под действием пе-

ременных по азимуту аэродинамических сил. Вертикальные шарниры позволяют лопастям совершать колебания в плоскости вращения. Эти колебания происходят под действием переменных сил лобового сопротивления и сил Кориолиса. Колебания лопастей относительно вертикального шарнира гасятся гидравлическими демпферами. Обычно демпферы соединяют подвижную и неподвижную часть лопасти.

Благодаря шарнирному креплению лопастей с корпусом втулки, значительно снижаются переменные напряжения в элементах несущего винта.

Осевые шарниры втулки предназначены для изменения углов установки лопастей. Для уменьшения угла установки лопасти при взмахе вверх и увеличения угла установки при движении ее вниз подбирают угол σ1 , образованный осью ГШ и отрезком, соединяющим центр ГШ с концом поводка рычага поворота лопасти.

Рисунок 19. Схема втулки с разнесёнными ГШ.

1- ось вала, 2- ГШ, 3- ВШ, 4-ОШ, 5- гидродемпфер, 6- поводок лопасти.

В некоторых случаях демпферы соединяют между собой подвижные части разных лопастей (рисунок 20), что упрощает конструкцию и облегчает вес несущей системы.

Рисунок 20. Схема карусельной установки демпфера. 1-лопасть, 2-демпфер, 3-ВШ.

Втулки с эластомерными подшипниками являются са-

мыми распространенными. Одна из разновидностей универсальной эластомерной шарнирной втулки представлена на рисунке 21.

Рисунок 21. Схема эластомерного шарнира втулки несущего винта.

1 - слой металла, 2 - слой резины, 3 - металлический стержень, соединяющийся с лопастью.

Принцип действия эластомерного подшипника основан на использовании свойств резины: подвергаться значительным деформациям при растяжении, сжатии и кручении.

Эластомерные подшипники представляют собой съемные блоки, состоящие из слоев резины и металла. Они не требуют смазки, уменьшают количество деталей втулки несущего винта, упрощают эксплуатацию и снижают стоимость. В связи с тем, что резина в подшипнике подвергается термомеханическому воздействию, она быстро стареет. Вследствие этого эластомерные подшипники обычно подлежат замене каждые 4 года.

Втулки с общим ГШ применяются на двухлопастных винтах. Лопасти жестко соединяются между собой. Подвеска на шарнире позволяет исключить влияние асимметрии обтекания.

Центробежные силы лопастей замыкаются на корпусе втулки и не нагружают подшипники, образующие ось ГШ. Для разгрузки комля лопасти от изгибающего момента имеют небольшой конструктивный угол конусности а0 =2…6°. К достоинствам втулок с общим ГШ следует отнести: простоту конструкции втулки, малую массу. Недостатками таких винтов являются большие изгибающие моменты в комле лопасти и большой уровень вибрации на втулке двухлопастного винта, вызываемый второй гармоникой аэродинамических сил. Такая конструкция широко используется на легких и сверхлегких вертолетах для несущих и двухлопастных рулевых винтов.

Втулки на кардане также имеют жесткое крепление лопастей между собой. Втулка крепится к валу с помощью универсального шарнира (кардана). Горизонтальные шарниры заменены карданами. Центробежные силы лопастей замыкаются на корпусе втулки и не нагружают подшипники, образующие ось кардана. ОШ нагружены сильнее, чем у винтов с шарнирным креплением лопастей. Центр кардана для облегчения управления выносят наверх. Такая конструкция широко используется на втулках рулевых винтов.

Втулки с жестким креплением лопастей имеет простую конструкцию, однако в лопастях и валах создаются большие

изгибающие моменты, что приводит к утяжелению конструкции.

Существуют также втулки несущих винтов, рукава которых выполнены из упругих материалов, что позволяет лопастям совершать маховое движение в плоскостях тяги и вращение за счет упругости конструкционного материала. Это частично разгружает комлевую часть лопасти от изгибающих моментов.

2.7. Конструкция втулок несущих винтов

За последние годы конструкция втулок несущего винта претерпела существенные изменения в сторону упрощения.

Наиболее сложной является конструкция трехшарнирной втулки (рисунок 22). Ее корпус 1 обычно изготавливается из стали или титанового сплава. Он закреплен на валу главного редуктора посредством шлиц и центрируется верхним 2 и нижним 17 конусами. Верхнее конусное кольцо состоит из двух половин, а нижнее - разрезное. Сверху корпус закрепляется на валу гайкой. Середины проушин корпуса смещены от оси вращения несущего винта, что позволяет равномерно нагружать подшипники ГШ и ВШ. Проушины корпуса вместе со скобой 5 образуют корпус ГШ. На пальце ГШ 4 установлены внутренние кольца 3 игольчатых подшипников. Наружные кольца находятся в проушинах корпуса. Между кольцами установлены две шайбы, выполняющие роль упорных подшипников скольжения. Они воспринимают осевые усилия, возникающие при колебаниях лопасти относительно ВШ. Между шайбами и внутренними кольцами имеется упорное кольцо. В качестве уплотнения ГШ используются резиновые армированные манжеты. К проушине пальца ГШ крепится шток демпфера ВШ. Для ограничения колебаний лопасти относительно ГШ на втулке имеются упоры. Верхние ограничители необходимы для предотвращения полного закидывания лопастей вверх при сильном ветре. Нижний ограничитель может изменять свое положение в зависимости от частоты вращения. Это вызвано тем, что допустимый угол свеса лопасти при неработающем

Рисунок 22. Конструкция втулки несущего винта.

1 - корпус втулки, 2 - верхний конус, 3 – внутреннее кольцо игольчатых подшипников, 4 – палец ГШ, 5- скоба, 6 – противовес, 7- цапфа ОШ, 8, 11шариковый радиальный подшипник, 9 – двухрядный роликовый подшипник, 10 – корпус ОШ, 12 – пружина, 13, 15 – пальцы, 14 – тяга, 16– собачка, 17 – нижний конус, 18 – рычаг поворота лопасти, 19 – валик рычага поворота лопасти, 20 – подшипник.

винте гораздо меньше, чем потребный угол маха лопасти вниз в полете. Поэтому на скобе имеются постоянные упоры и центробежный ограничитель свеса. Осевой шарнир образован соединением цапфы 7 и корпуса 10 ОШ. К цапфе крепится кронштейн, расположенный на цилиндре гидродемпфера. На хвостовике цапфы установлены подшипники ОШ: два шариковых радиальных 8, 11, которые воспринимают усилия от изгибающих моментов, действующих на лопасть, и упорный двухрядный роликовый 9, воспринимающий центробежную

силу лопасти. Гнезда сепаратора роликового подшипника развернуты под углом 50" к радиальному направлению. При таком расположении гнезд сепаратор не только колеблется, но и непрерывно вращается в одном направлении. В связи с этим ролики постоянно мигрируют и дорожки колец подшипника полностью участвуют в работе. В результате увеличиваются срок службы подшипников и ресурс ОШ. Корпус ОШ выполнен в виде стакана с проушинами для крепления лопасти. Скоба и цапфа образуют корпус ВШ, который конструктивно выполнен аналогично ГШ. Рычаг поворота 18 лопасти крепится болтами к корпусу ОШ. В цилиндрической полости на конце рычага на двухрядном радиально-упорном шарикоподшипнике и радиальном роликовом подшипнике установлен валик 19. В проушине валика на двух шарикоподшипниках 20 установлен палец, соединяющий рычаг поворота лопасти с тягой автомата перекоса.

Центробежный ограничитель (рисунок 23) смонтирован на нижней поверхности вертикального ограничителя 1 с помощью кронштейна 4 и сухаря 2. На кронштейн 4 на двух шариковых подшипниках установлен подвижный кронштейн 5. К нему крепится центробежный упор свеса 9 и две пластины 6, к которым крепится груз 7, состоящий из набора стальных шайб. Пружина 8 одним концом закреплена на кронштейне 4, а другим - за болт крепления груза 7. На малых частотах вращения несущих винтов зуб центробежного упора свеса 9 под действием пружины 8 находится, в зазоре между упорами корпуса втулки 10 и вертикального ограничителя 1, уменьшая, таким образом, свес лопасти.

Контактная поверхность упора 9 плотно прилегает к соответствующим поверхностям на корпусе 10 и вертикальном ограничителе 1. Подшипники ограничителя свеса посажены в корпус кронштейна 4 на резиновых втулках амортизаторах, что разгружает их от больших нагрузок.

При увеличении частоты вращения несущего винта грузы 7 под действием центробежной силы начинают преодолевать сопротивление пружины 8 и выводить зуб упора свеса 9 из за-

зора между упорами на корпусе 10 и вертикальном ограничителе 1.

Рисунок 23. Центробежный ограничитель свеса.

1 - вертикальный ограничитель, 2 - сухарь, 3 - болт, 4 - кронштейн, 5 - подвижный кронштейн, 6 - стальные пластины, 7 - груз, 8- пружина, 9 - упор свеса, 10 - корпус втулки.

При уменьшении частоты вращения несущего винта уменьшается центробежная сила груза 7 и упор 9 под действием пружины 8 возвращается в исходное положение. Таким образом, на рабочих частотах вращения несущего винта упор свеса 9 не препятствует маховому движению лопасти.

В конструкции втулок часто удается узлы навески лопасти совместить с вертикальным шарниром (рисунок 24). В этом случае лопасти непосредственно соединяются с демпфером вертикального шарнира. Конструкция при этом упрощается. Если же соединение с демпфером делается легкоразъемным, то лопасти, поворачиваясь относительно ВШ, могут быть сложены вручную вдоль хвостовой балки.

В настоящее время часто применяются осевые шарниры с торсионом (рисунок 25). Обычно торсион представляет собой набор металлических пластин, которые выдерживают растяги-

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «avtoton62.ru» — Автомобильный портал - Запчасти. Оборудование. Шины и диски. Электроника